Skip to main content

Microwave-Assisted Olefin Metathesis

  • Conference paper
  • 1796 Accesses

Abstract

Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For some recent monographs on microwave-assisted reactions, see: (a) Hayes BL (2002) Microwave synthesis: chemistry at the speed of light, 1st edn., CEM, Matthews, NC;

    Google Scholar 

  2. Microwaves in organic and medicinal chemistry. In Kappe CO, Stadler A (eds.) (2005) Methods and principles in medicinal chemistry, vol. 25, Wiley-VCH, Weinheim, Germany;

    Google Scholar 

  3. Loupy A (2006) Microwaves in organic synthesis, 2nd edn., Wiley-VCH, Weinheim, Germany

    Google Scholar 

  4. For some recent reviews on microwave-assisted reactions, see: (a) Perreux L, Loupy A (2001) A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 57: 9199–9223;

    Article  CAS  Google Scholar 

  5. Lidström P, Tierney J, Wathey B, Westman J (2001) Microwave-assisted organic synthesis — a review. Tetrahedron 57: 9225–9283;

    Article  Google Scholar 

  6. Larhed M, Moberg C, Hallberg A (2002) Microwave-accelerated homogeneous catalysis in organic chemistry. Acc Chem Res 35: 717–717;

    Article  CAS  Google Scholar 

  7. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43: 6250–6284;

    Article  CAS  Google Scholar 

  8. Hayes BL (2004) Recent advances in microwave-assisted synthesis. Aldrichim Acta 37: 66–76;

    CAS  Google Scholar 

  9. Nüchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave-assisted synthesis — a critical technology overview. Green Chem 6: 128– 141;

    Article  Google Scholar 

  10. Xu Y, Guo QX. (2004) Syntheses of heterocyclic compounds under microwave irradiation. Heterocycles 63: 903–974;

    Article  CAS  Google Scholar 

  11. Desai B, Kappe CO (2004) Microwave-assisted synthesis involving immobilized catalysts. Top Curr Chem 242: 177–208;

    CAS  Google Scholar 

  12. de la Hoz A, Diaz-Ortiz A, Moreno A (2005) Activation of organic reactions by microwaves. Adv Org Synth 1: 119–171;

    Article  Google Scholar 

  13. Dallinger D, Kappe CO (2007) Microwave-assisted synthesis in water as solvent. Chem Rev 107: 2563–2591;

    Article  CAS  Google Scholar 

  14. Baxendale IR, Hayward JJ, Ley SV (2007) Microwave reactions under continuous flow conditions. Comb Chem High Throughput Screen 10: 802–836;

    Article  CAS  Google Scholar 

  15. Kappe CO (2008) Microwave dielectric heating in synthetic organic chemistry. Chem Soc Rev 37: 1127–1139;

    Article  CAS  Google Scholar 

  16. Polshettiwar V, Varma RS (2008) Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery. Chem Soc Rev 37: 1546–1557;

    Article  CAS  Google Scholar 

  17. Appukkuttan P, Van der Eycken E (2008) Recent developments in microwave-assisted, transition-metal-catalysed C—C and C—N bond-forming reactions. Eur J Org Chem 1133–1155

    Google Scholar 

  18. Varray S, Gauzy C, Lamaty F, Lazaro R, Martinez J (2000) Synthesis of cyclic amino acid derivatives via ring closing metathesis on a poly(ethylene glycol) supported substrate. J Org Chem 65: 6787–6790

    Article  CAS  Google Scholar 

  19. Coquerel Y, Rodriguez J (2008) Microwave-assisted olefin metathesis. Eur J Org Chem 1125–1132

    Google Scholar 

  20. Geng X, Danishefsky SJ (2004) Total synthesis of aigialomycin D. Org Lett 6: 413–416;

    Article  CAS  Google Scholar 

  21. Yang ZQ, Geng X, Solit D, Pratilas CA, Rosen N, Danishefsky SJ (2004) New efficient synthesis of resorcinylic macrolides via ynolides: establishment of cycloproparadicicol as synthetically feasible preclinical anticancer agent based on Hsp90 as the target. J Am Chem Soc 126: 7881–7889

    Article  CAS  Google Scholar 

  22. Vu NQ, Chai CLL, Lim KP, Chia SC, Chen A (2007) An efficient and practical total synthesis of aigialomycin D. Tetrahedron 63: 7053–7058

    Article  CAS  Google Scholar 

  23. Nosse B, Schall A, Jeong WB, Reiser O (2005) Optimization of ring-closing metathesis: inert gas sparging and microwave irradiation. Adv Synth Catal 347: 1869–1874

    Article  CAS  Google Scholar 

  24. Benakki H, Colacino E, André C, Guenoun F, Martinez J, Lamaty F (2008) Microwave-assisted multi-step synthesis of novel pyrrolo-[3,2-c]quinoline derivatives. Tetrahedron 64: 5949–5955

    Article  CAS  Google Scholar 

  25. Declerck V, Ribière P, Martinez J, Lamaty F (2004) Sequential aza-Baylis—Hillman/ring closing metathesis/aromatization as a novel route for the synthesis of substituted pyrroles. J Org Chem 69: 8372–8381

    Article  CAS  Google Scholar 

  26. O'Brien CJ, Kantchev EAB, Valente C, Hadei N, Chass GA, Lough A, Hopkinson AC, Organ MG (2006) Easily prepared air- and moisture-stable Pd–NHC (NHC = N-heterocyclic carbene) complexes: a reliable, user-friendly, highly active palladium precatalyst for the Suzuki—Miyaura reaction. Chem Eur J 12: 4743–4748;

    Article  Google Scholar 

  27. Organ MG, Avola S, Dubovyk I, Hadei N, Kantchev EAB, O'Brien CJ, Valente C (2006) A user-friendly, all-purpose Pd— NHC (NHC = N-heterocyclic carbene) precatalyst for the Negishi reaction: a step towards a universal cross-coupling catalyst. Chem Eur J 12: 4749–4755

    Article  CAS  Google Scholar 

  28. Lamberto M, Kilburn JD (2008) Synthesis of indolizidines from dialkylated isocyanides: a novel radical cyclisation/N-alkylation/ring closing metathesis approach. Tetrahedron Lett 49: 6364–6367

    Article  CAS  Google Scholar 

  29. Jam F, Tullberg M, Luthman K, Grøtli M (2007) Microwave assisted synthesis of spiro-2,5-diketopiperazines. Tetrahedron 63: 9881–9889

    Article  CAS  Google Scholar 

  30. Hammer K, Undheim K (1997) Ruthenium(II) in ring closing metathesis for the stereoselective preparation of cyclic 1-amino-1-carboxylic acids. Tetrahedron 53: 2309–2322

    Article  CAS  Google Scholar 

  31. Terracciano S, Bruno I, D'Amico E, Bifulco G, Zampella A, Sepe V, Smith CD, Riccio R (2008) Synthetic and pharmacological studies on new simplified analogues of the potent actin-targeting jaspamide. Bioorg Med Chem 16: 6580–6588

    Article  CAS  Google Scholar 

  32. Robinson AJ, Elaridi J, van Lierop BJ, Mujcinovic S, Jackson WR (2007) Microwave-assisted RCM for the synthesis of carbocyclic peptides. J Pept Sci 13: 280–285

    Article  CAS  Google Scholar 

  33. See also: (a) Robinson AJ, Garland R, Illesinghe J, van Lierop B, Gooding S, Whelan A, Elaridi J, Teoh E, Jackson WR, Applying homogeneous catalysis to the synthesis of peptidomimetics, 16th International Symposium on Homogeneous Catalysis, Florence (Italy), July 6–11, 2008, abstract P 373;

    Google Scholar 

  34. Illesinghe J, Garland R, Xing Guo C, Ahmed A, van Lierop B, Jackson WR, Robinson AJ, Metathesis-assisted synthesis of cyclic peptides, 16th International Symposium on Homogeneous Catalysis, Florence (Italy), July 6–11, 2008, abstract P 374

    Google Scholar 

  35. Elaridi J, Patel J, Jackson WR, Robinson AJ (2006) Controlled synthesis of (S,S)-2,7-diaminosuberic acid: a method for regioselective construction of dicarba analogues of multicystine-containing peptides. J Org Chem 71: 7538–7545

    Article  CAS  Google Scholar 

  36. See also: Teoh E, Garland R, Illesinghe J, Whelan A, Kozowski Z, Jackson WR, Robinson AJ, Using cross metathesis to generate peptide-polymer hybrids, 16th International Symposium on Homogeneous Catalysis, Florence (Italy), July 6–11, 2008, abstract P 375

    Google Scholar 

  37. Lumini M, Cordero FM, Pisaneschi F, Brandi A (2008) Straightforward synthesis of α-substituted prolines by cross-metathesis. Eur J Org Chem 2817–2824

    Google Scholar 

  38. Goldup SM, Pilkington CJ, White AJP, Burton A, Barrett AGM (2006) A simple, short, and flexible synthesis of viridiofungin derivatives. J Org Chem 71: 6185–6191

    Article  CAS  Google Scholar 

  39. Lombardo M, Capdevila MG, Pasi F, Trombini C (2006) An efficient high-yield synthesis of D-ribo-phytosphingosine. Org Lett 8: 3303–3305

    Article  CAS  Google Scholar 

  40. Hayashi Y, Regnier T, Nishiguchi S, Sydnes MO, Hashimoto D, Hasegawa J, Katoh T, Kajimoto T, Shiozuka M, Matsuda R, Node M, Kiso Y (2008) Efficient total synthesis of (+)-negamycin, a potential chemotherapeutic agent for genetic diseases. Chem Commun 2379–2381

    Google Scholar 

  41. Gebauer J, Arseniyadis S, Cossy J (2008) Total synthesis of cystothiazole A by microwave-assisted olefin cross-metathesis. Eur J Org Chem 2701–2704

    Google Scholar 

  42. Jackson R, Gartshore C, Illesinghe J, Robinson AJ, A metathesis route to spirocyclic alkaloid precursors, 16th International Symposium on Homogeneous Catalysis, Florence (Italy), July 6–11, 2008, abstract P 378

    Google Scholar 

  43. Artman GD III, Grubbs AW, Williams RM (2007) Concise, asymmetric, stereocontrolled total synthesis of stephacidins A, B and notoamide B. J Am Chem Soc 129: 6336–6342

    Article  CAS  Google Scholar 

  44. Debleds O, Campagne JM (2008) 1,5-Enyne metathesis. J Am Chem Soc 130: 1562–1563

    Article  CAS  Google Scholar 

  45. Nicolaou KC, Brenzovich WE, Bulger PG, Francis TM (2006) Synthesis of iso-epoxy-amphidinolide N and des-epoxy-carabenolide I structures. Initial forays. Org Biomol Chem 4: 2119–2157

    CAS  Google Scholar 

  46. Castagnolo D, Renzulli ML, Galletti E, Corelli F, Botta M (2005) Microwave-assisted ethylene—alkyne cross-metathesis: synthesis of chiral 2-(N-1-acetyl-1-arylmethyl)-1,3-butadienes. Tetrahedron: Asymmetry 16: 2893–2896;

    Article  CAS  Google Scholar 

  47. Castagnolo D, Giorgi G, Spinosa R, Corelli F, Botta M (2007) Practical syntheses of enantiomerically pure N-acetylbenzhydrylamines. Eur J Org Chem 3676–3686

    Google Scholar 

  48. Mortreux A, Blanchard M (1974) Metathesis of alkynes by a molybdenum hexacarbonyl— resorcinol catalyst. J Chem Soc Chem Commun 786–787

    Google Scholar 

  49. Villemin D, Héroux M, Blot V (2001) Silanol–molybdenum hexacarbonyl as a new efficient catalyst for metathesis of functionalised alkynes under microwave irradiation. Tetrahedron Lett 42: 3701–3703

    Article  CAS  Google Scholar 

  50. Fürstner A, Stelzer F, Rumbo A, Krause H (2002) Total synthesis of the turrianes and evaluation of their DNA-cleaving properties. Chem Eur J 8: 1856–1871

    Article  Google Scholar 

  51. Efskind J, Undheim K (2003) High temperature microwave-accelerated ruthenium-catalysed domino RCM reactions. Tetrahedron Lett 44: 2837–2839

    Article  CAS  Google Scholar 

  52. Dhanalakshmi K, Sundararajan G (1997) Microwave-assisted polymerisation of phenylacetylenes. Polym Bull 39: 333–337

    Article  CAS  Google Scholar 

  53. Jhaveri SB, Carter KR (2007) Disubstituted polyacetylene brushes grown via surface-directed tungsten-catalyzed polymerization. Langmuir 23: 8288–8290

    Article  CAS  Google Scholar 

  54. de la Hoz A, Diaz-Ortiz Á, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34: 164–178

    Google Scholar 

  55. Garbacia S, Desai B, Lavastre O, Kappe CO (2003) Microwave-assisted ring-closing metathesis revisited. On the question of the nonthermal microwave effect. J Org Chem 68: 9136–9139

    CAS  Google Scholar 

  56. Herrero MA, Kremsner JM, Kappe CO (2008) Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem 73: 36–47

    Article  CAS  Google Scholar 

  57. Gilday JP, Lenden P, Moseley JD, Cox BG (2008) The Newman—Kwart rearrangement: a microwave kinetic study. J Org Chem 73: 3130–3134

    Article  CAS  Google Scholar 

  58. Teske JA, Deiters A (2008) Microwave-mediated nickel-catalyzed cyclo-trimerization reactions: total synthesis of illudine. J Org Chem 73: 342–345

    Article  CAS  Google Scholar 

  59. Razzaq T, Kappe CO (2008) On the energy efficiency of microwave-assisted organic reactions. ChemSusChem 1: 123–132

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Demonceau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Nicks, F. et al. (2010). Microwave-Assisted Olefin Metathesis. In: Dragutan, V., Demonceau, A., Dragutan, I., Finkelshtein, E.S. (eds) Green Metathesis Chemistry. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3433-5_21

Download citation

Publish with us

Policies and ethics