Skip to main content

Rhythmic Expression of Notch Signaling in Neural Progenitor Cells

  • Chapter
  • First Online:
Perspectives of Stem Cells

Abstract

The activator-type basic helix-loop-helix (bHLH) genes such as Mash1 and Neurogenin2 (Ngn2) promote neuronal differentiation and induce expression of Notch ligands such as Delta1, which activate Notch signaling of neighboring cells. Activation of Notch signaling induces expression of the repressor-type bHLH genes such as Hes1 and Hes5, which maintain neural progenitor cells by antagonizing activator-type bHLH genes. Thus, differentiating neurons keep their neighboring cells as neural progenitor cells via Notch signaling. How, then, are neural progenitor cells maintained before formation of such neurons? A recent study revealed that Hes1 expression occurs rhythmically in neural progenitor cells, and that Ngn2 and Delta1 are also expressed in an oscillatory manner by these cells. Inhibition of Notch signaling, a condition known to induce neuronal differentiation, leads to down-regulation of Hes1 and sustained up-regulation of Ngn2 and Delta1, suggesting that Hes1 oscillation regulates Ngn2 and Delta1 oscillations. It is likely that Delta1 oscillations reciprocally activate Notch signaling between neighboring neural progenitor cells. These results also suggest that oscillatory expression of Ngn2 is not sufficient but sustained up-regulation is required for neuronal differentiation and that Ngn2 oscillation is advantageous for activation of Notch signaling by inducing Delta1 expression without promoting neuronal differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bHLH:

basic helix-loop-helix

GABA:

γ-aminobutyric acid

Ngn2:

Neurogenin 2

NICD:

Notch intracellular domain

Stat3-P:

Phosphorylated Stat3

References

  • Alvarez-Buylla A, Garcia-Verdugo JM, and Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293.

    Article  CAS  PubMed  Google Scholar 

  • Anthony TE, Klein C, Fishell G, and Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890.

    Article  CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, and Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776.

    Article  CAS  PubMed  Google Scholar 

  • Baek JH, Hatakeyama J, Sakamoto S, Ohtsuka T, and Kageyama R (2006) Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133:2467–2476.

    Article  CAS  PubMed  Google Scholar 

  • Bai G, Sheng N, Xie Z, Bian W, Yokota Y, Benezra R, Kageyama R, Guillemot F, and Jing N (2007) Id sustains Hes1 expression to inhibit precocious neurogenesis by releasing negative autoregulation of Hes1. Dev Cell 13:283–297.

    Article  CAS  PubMed  Google Scholar 

  • Bertrand N, Castro DS, and Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3:517–530.

    Article  CAS  PubMed  Google Scholar 

  • Castella P, Sawai S, Nakao K, Wagner JA, and Caudy M (2000) HES-1 repression of differentiation and proliferation in PC12 cells: role for the helix 3-helix 4 domain in transcription repression. Mol Cell Biol 20:6170–6183.

    Article  CAS  PubMed  Google Scholar 

  • Castro DS, Skowronska-Krawczyk D, Armant O, Donaldson IJ, Parras C, Hunt C, Critchley JA, Nguyen L, Gossler A, Göttgens B, Matter J-M, and Guillemot F (2006) Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. Dev Cell 11:831–844.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Thiagalingam A, Chopra H, Borges MW, Feder JN, Nelkin BD, Baylin SB, and Ball DW (1997) Conservation of the Drosophila lateral inhibition pathway in human lung cancer: a hairy-related protein (HES-1) directly represses achaete-scute homolog-1 expression. Proc Natl Acad Sci USA 94:5355–5360.

    Article  CAS  PubMed  Google Scholar 

  • Chien C, Hsiao C-D, Jan LY, and Jan YN (1996) Neuronal type information encoded in the basic-helix-loop-helix domain of proneural genes. Proc Natl Acad Sci USA 93:13239–13244.

    Article  CAS  PubMed  Google Scholar 

  • Fisher AL, Ohsako S, and Caudy M (1996) The WRPW motif of the Hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein–protein interaction domain. Mol Cell Biol 16:2670–2677.

    CAS  PubMed  Google Scholar 

  • Fode C, Ma Q, Casarosa S, Ang S-L, Anderson DJ, and Guillemot F (2000) A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev 14:67–80.

    CAS  PubMed  Google Scholar 

  • Fujita S (2003) The discovery of the matrix cell, the identification of the multipotent neural stem cell and the development of the central nervous system. Cell Struct Funct 28:205–228.

    Article  PubMed  Google Scholar 

  • Grbavec D and Stifani S (1996) Molecular interaction between TLE1 and the carboxyl-terminal domain of HES-1 containing the WRPW motif. Biochem Biophys Res Commun 223:701–705.

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama J, Tomita K, Inoue T, and Kageyama R (2001) Roles of homeobox and bHLH genes in specification of a retinal cell type. Development 128:1313–1322.

    CAS  PubMed  Google Scholar 

  • Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, and Kageyama R (2004) Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131:5539–5550.

    Article  CAS  PubMed  Google Scholar 

  • Heng JI, Nguyen L, Castro DS, Zimmer C, Wildner H, Armant O, Skowronska-Krawczyk D, Bedogni F, Matter JM, Hevner R, and Guillemot F (2008) Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 455:114–118.

    Article  CAS  PubMed  Google Scholar 

  • Hirata H, Tomita K, Bessho Y, and Kageyama R (2001) Hes1 and Hes3 regulate maintenance of the isthmic organizer and development of the mid/hindbrain. EMBO J 20:4454–4466.

    Article  CAS  PubMed  Google Scholar 

  • Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, and Kageyama R (2002) Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298:840–843.

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi M, Moriyoshi K, Sasai Y, Shiota K, Nakanishi S, and Kageyama R (1994) Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J 13:1799–1805.

    CAS  PubMed  Google Scholar 

  • Imayoshi I, Sakamoto M, Ohtsuka T et al. (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161.

    Article  CAS  PubMed  Google Scholar 

  • Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, and Israel A (1995) Signalling downstream of activated mammalian Notch. Nature 377:355–358.

    Article  CAS  PubMed  Google Scholar 

  • Johnson JE, Birren SJ, Saito T, and Anderson DJ (1992) DNA binding and transcriptional regulatory activities of mammalian achaete-scute homologous (MASH) proteins revealed by interaction with a muscle-specific enhancer. Proc Natl Acad Sci USA 89:3596–3600.

    Article  CAS  PubMed  Google Scholar 

  • Kabos P, Kabosova A, and Neuman A (2002) Blocking HES1 expression initiates GABAergic differentiation and induces the expression of p21(CIP1/WAF1) in human neural stem cells. J Biol Chem 277:8763–8766.

    Article  CAS  PubMed  Google Scholar 

  • Kageyama R, Ohtsuka T, Hatakeyama J, and Ohsawa R (2005) Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res 306:343–348.

    Article  CAS  PubMed  Google Scholar 

  • Kageyama R, Ohtsuka T, and Kobayashi T (2007) The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 134:1243–1251.

    Article  CAS  PubMed  Google Scholar 

  • Kageyama R, Ohtsuka T, Shimojo H, and Imayoshi I (2008) Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci 11:1247–1251.

    Article  CAS  PubMed  Google Scholar 

  • Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, and Gotoh Y (2004) Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signaling. Nat Cell Biol 6:547–554.

    Article  CAS  PubMed  Google Scholar 

  • Malatesta P, Hartfuss E, and Götz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263.

    CAS  PubMed  Google Scholar 

  • Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y, Yoshikawa K, Okamura H, and Kageyama R (2006) Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc Natl Acad Sci USA 103:1313–1318.

    Article  CAS  PubMed  Google Scholar 

  • Murata K, Hattori M, Hirai N, Shinozuka Y, Hirata H, Kageyama R, Sakai T, and Minato N (2005) Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol 25:4262–4271.

    Article  CAS  PubMed  Google Scholar 

  • Nieto M, Schuurmans S, Britz O, and Guillemot F (2001) Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29:401–413.

    Article  CAS  PubMed  Google Scholar 

  • Noctor SC, Flint AC, Weissmann TA, Dammerman RS, and Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 109:714–720.

    Article  Google Scholar 

  • Ohsawa R, Ohtsuka T, and Kageyama R (2005) Mash1 and Math3 are required for development of branchiomotr neurons and maintenance of neural progenitors. J Neurosci 25:5857–5865.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, and Kageyama R (1999) Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation. EMBO J 18:2196–2207.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka T, Sakamoto M, Guillemot F, and Kageyama R (2001) Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J Biol Chem 276:30467–30474.

    Article  CAS  PubMed  Google Scholar 

  • Paroush Z, Finley L JR, Kidd T, Wainwright SM, Ingham PW, Brent R, and Ish-Horowictz D (1994) Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 79:805–815.

    Article  CAS  PubMed  Google Scholar 

  • Parras CM, Schuurmans C, Scardigli R, Kim J, Anderson DJ, and Guillemot F (2002) Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev 16:324–338.

    Article  CAS  PubMed  Google Scholar 

  • Ross SE, Greenberg ME, and Stiles CD (2003) Basic helix-loop-helix factors in cortical development. Neuron 39:13–25.

    Article  CAS  PubMed  Google Scholar 

  • Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, and Nakanishi S (1992) Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev 6:2620–2634.

    Article  CAS  PubMed  Google Scholar 

  • Selkoe D and Kopan R (2003) Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci 26:565–597.

    Article  CAS  PubMed  Google Scholar 

  • Shimojo H, Ohtsuka T, and Kageyama R (2008) Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58:52–64.

    Article  CAS  PubMed  Google Scholar 

  • Ström A, Arai N, Leers J, and Gustafsson J-Ã… (2000) The Hairy and Enhancer of Split homologue-1 (HES-1) mediates the proliferative effect of 17beta-estradiol on breast cancer cell lines. Oncogene 19:5951–5953.

    Article  PubMed  Google Scholar 

  • Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, and Greenberg ME (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104:365–376.

    Article  CAS  PubMed  Google Scholar 

  • Takebayashi K, Sasai Y, Sakai Y, Watanabe T, Nakanishi S, and Kageyama R (1994) Structure, chromosomal locus, and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-1: negative autoregulation through the multiple N box elements. J Biol Chem 269:5150–5156.

    CAS  PubMed  Google Scholar 

  • Tomita K, Moriyoshi K, Nakanishi S, Guillemot F, and Kageyama R (2000) Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J 19:5460–5472.

    Article  CAS  PubMed  Google Scholar 

  • Yoshiura S, Ohtsuka T, Takenaka Y, Nagahara H, Yoshikawa K, and Kageyama R (2007) Ultradian oscillations of Stat, Smad, and Hes1 expression in response to serum. Proc Natl Acad Sci USA 104:11292–11297.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Uehara Memorial Foundation. H.S. was supported by the twenty-first century Center of Excellence Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan and Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichiro Kageyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shimojo, H., Ohtsuka, T., Kageyama, R. (2010). Rhythmic Expression of Notch Signaling in Neural Progenitor Cells. In: Ulrich, H. (eds) Perspectives of Stem Cells. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3375-8_10

Download citation

Publish with us

Policies and ethics