Skip to main content

Viral Origins of Telomeres and Telomerases

  • Chapter
  • First Online:
  • 690 Accesses

Abstract

The biocommunicative approach investigates rule-governed, sign-mediated interactions both within and among cells, tissues, organs and organisms. It also investigates genetic sequences as codes/texts that are coherent with the laws of physics and chemistry but, in addition, follow a complementary mix of combinatorial (syntactic), context-sensitive (pragmatic), content-specific (semantic) rules. In this respect, the roles of telomeres and telomerases in evolution, structure and content arrangement of genomes are of particular interest. This involves deciphering the relationships between the ‘molecular syntax’ of telomere repeats and their meaning, i.e. their function in the genomic content. This requires their evolutionary roots to be examined. The telomere replication process by telomerase is the most important feature here because it is processed by a very ancient competence, i.e. reverse transcriptase with a great variety of functions in most key processes of living nature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ast G (2005) The alternative genome. Sci Am 292:58–65

    Article  CAS  Google Scholar 

  • Bapteste E, Charlebois RL, MacLeod D et al. (2005) The two tempos of nuclear pore complex evolution: highly adapting proteins in an ancient frozen structure. Genome Biol 6:R85

    Article  PubMed  Google Scholar 

  • Batzer MA, Deininger DL (2002) ALU repeats and human genomic diversity. Nat Rev Genet 3:370–380

    Article  CAS  PubMed  Google Scholar 

  • Bird CP, Stranger BE, Dermitzakis ET (2006) Functional variation and evolution of non coding DNA. Curr Opin Genetics Dev 16:559–564

    Article  CAS  Google Scholar 

  • Blasco M (2007) The epigenetic regulation of mammalian telomeres. Nat Rev 8:299–309

    Article  CAS  Google Scholar 

  • Boeke JD (2003) The unusual phylogenetic distribution of retrotransposons: a hypothesis. Genome Res 13:1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Brosius J (2003) The contribution of RNAs and retroposition to evolutionary novelties. Genetica 118:99–115

    Article  CAS  PubMed  Google Scholar 

  • Chaconas G (2005) Hairpin telomeres and genome plasticity in Borrelia: all mixed up in the end. Mol Microbiol 58:625–635

    Article  CAS  PubMed  Google Scholar 

  • Coffin JM, Hughes AH, Varmus HE (1997) Retroviruses. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Cottingham FR, Hoyt MA (1997) Mitotic spindle positioning in saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J Cell Biol 138:1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Couzin J (2002) Small RNAs make big splash. Science 298:2296–2297

    Article  CAS  PubMed  Google Scholar 

  • Curcio MJ, Belfort M (2007) The beginning of the end: links between ancient retroelements and modern telomerases. Proc Natl Acad Sci USA 104:9107–9108

    Article  CAS  PubMed  Google Scholar 

  • Darzacq X, Jady BE, Verheggen C et al. (2002) Cajal body-specific small nuclear RNAs: a novel class of 2’-O-methylation and pseudouridylation guide RNAs. EMBO J 21:2746–2756

    Article  CAS  PubMed  Google Scholar 

  • Daubin V, Ochman H (2004) Start-up entities in the origin of new genes. Curr Opin Genetics Dev 14:616–619

    Article  CAS  Google Scholar 

  • Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  CAS  PubMed  Google Scholar 

  • Du S, Traktman P (1996) Vaccinia virus DNA replication: two hundred base pairs of telomeric sequence confer optimal replication efficiency on minichromosome templates. Proc Natl Acad Sci USA 93:9693–9698

    Article  CAS  PubMed  Google Scholar 

  • Eickbush TH (1997) Telomerase and retrotransposons: which came first? Science 277:911–912

    Article  CAS  PubMed  Google Scholar 

  • Eickbush T (1999). Mobile introns: retrohoming by complete reverse splicing. Curr Biol 9:11–14

    Article  Google Scholar 

  • Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477–485

    Article  CAS  PubMed  Google Scholar 

  • Fajkus J, Sykorova E, Leitch AR (2005) Telomeres in evolution and evolution of telomeres. Chromosome Res 13:469–479

    Article  CAS  PubMed  Google Scholar 

  • Filipowicz W (2000) Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proc Natl Acad Sci USA 97:14035–14037

    Article  CAS  PubMed  Google Scholar 

  • Fire A (2005) Nucleic acid structure and intracellular immunity: some recent ideas from the world of RNAi. Q Rev Biophys 38:303–309

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Flavell AJ (1995) Retroelements, reverse transcriptase and evolution. Comp Biochem Physiol B 110:3–15

    Article  CAS  PubMed  Google Scholar 

  • Frost LS, Laplae R, Summers AO et al. (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  CAS  PubMed  Google Scholar 

  • Grewal SIS, Elgin SCR (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 447:399–406

    Article  CAS  PubMed  Google Scholar 

  • Haoudi A, Mason JM (2000) Reverse transcriptase can stabilize or destabilize the genome. Genome 43:949–956

    Article  CAS  PubMed  Google Scholar 

  • Ijdo JW, Baldini A, Ward DC et al. (1991) Origin of human chromosome 2: an ancestral telomere-telomere fusion. Proc Natl Acad Sci USA 88:9051–9055

    Article  CAS  PubMed  Google Scholar 

  • Jady BE, Bertrand E, Kiss T (2004) Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. J Cell Biol 164:647–652

    Article  CAS  PubMed  Google Scholar 

  • Kiss AM, Jady BE, Darzaq X et al. (2001) A Cajal body specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Res 30:4643–4649

    Article  Google Scholar 

  • Koonin EV (2006) Temporal order of evolution of DNA replication system inferred by comparison of cellular and viral DNA polymerases. Biology Direct doi:10.1186/1745-6150-1–39

    Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2006) The ancient Virus World and evolution of cells. Biol Direct 1:29

    Article  PubMed  Google Scholar 

  • Laun P, Bruschi CV, Dickinson JR et al. (2007) Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing. Nucleic Acids Res doi:10.1093/nar/gkm919, 1–14.

    Google Scholar 

  • Leipe DD, Aravind L, Koonin EV (1999) Did DNA replication evolve twice independently? Nucleic Acids Res 27:3389–3401

    Article  CAS  PubMed  Google Scholar 

  • Maita N, Anzai T, Aoyagi H et al. (2004) Crystal structure of the endonuclease domain encoded by the telomere-specific long interspersed nuclear element, TRAS1. J Biol Chem 279:41067–41076

    Article  CAS  PubMed  Google Scholar 

  • Maizels A, Weiner AM (1999) The genomic tag hypothesis: modern viruses as molecular fossils of ancient strategies for genomic replication. Biol Bull 196:327–330

    Article  PubMed  Google Scholar 

  • Maizels N, Weiner AM, Yue D et al. (1999) New evidence for the genomic tag hypothesis: archaeal CCA-adding enzymes and tRNA substrates. Biol Bull 196:331–334

    Article  CAS  PubMed  Google Scholar 

  • Matera AG (2006) Drosophila Cajal bodies: accessories not included. J Cell Biol 172:791–793

    Article  CAS  PubMed  Google Scholar 

  • Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8:209–220

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2:986–991

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2006) The underworld of RNA. Nat Genet 38:393

    Article  CAS  Google Scholar 

  • Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210:1526–1547

    Article  PubMed  Google Scholar 

  • Mesnard JM, Lebeurier G (1991) How do viral reverse transcriptases recognize their RNA genome? FEBS Lett 287:1–4

    Article  CAS  PubMed  Google Scholar 

  • Nakamura TM, Cech TR (1998) Reversing time: origin of telomerase. Cell 92:587–590

    Article  CAS  PubMed  Google Scholar 

  • Nosek J, Kosa P, Tomaska L (2006) On the origin of telomeres: a glimpse at the pre-telomerase world. Bioessays 28:182–190

    Article  CAS  PubMed  Google Scholar 

  • Obbard DJ, Gordon KHJ, Buck AH et al. (2009) The evolution of ENAi as a defence against viruses and transposable elements. Phil Trans R Soc B 364:99–115

    Article  CAS  PubMed  Google Scholar 

  • Platani M, Goldberg I, Lamond AI et al. (2002) Cajal body dynamics and association with chromatin are ATP dependent. Nat Cell Biol 4:502–508

    Article  CAS  PubMed  Google Scholar 

  • Rashkova S, Karam SE, Kellum R et al. (2002) Gag proteins of the two drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell Biol 159:397–402

    Article  CAS  PubMed  Google Scholar 

  • Rogozin IB, Sverdlov AV, Babenko VN et al. (2005) Analysis of evolution of exon-intron structure of eukaryotic genes. Brief Bioinform 6:118–134

    Article  CAS  PubMed  Google Scholar 

  • Ryan FP (2006) Genomic creativity and natural selection: a modern synthesis. Biol J Linn Soc 88:655–672

    Article  Google Scholar 

  • Savitsky M, Kwon D, Georgiev P, Kalmykova A, Gvozdev V (2006) Telomere elongation is under the control of the RNAi-based mechanism in the Drosophila germline. Genes Dev 20:345–354

    Article  CAS  PubMed  Google Scholar 

  • Shabalina SA, Spiridonov NA (2004) The mammalian transcriptome and the function of non-coding DNA sequences. Genome Biol 5:105e

    Article  Google Scholar 

  • Shapiro JA (2002) Genome organization and reorganization in evolution. In: Van Speybroeck L, Van de Vijver G, Waele DD (eds) From Epigenesis to Epigenetics. The genome in context. Ann NY Acad Sci 981:111–134

    Google Scholar 

  • Shapiro JA (2006) Genome informatics: the role of DNA in cellular computations. Biol Theor 1:288–301

    Article  Google Scholar 

  • Shapiro JA, Sternberg R (2005) Why repetitive DNA is essential to genome function. Biol Rev 80:1–24

    Article  Google Scholar 

  • Slotkin RK, Martienssen R (2007). Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Sternberg R (2002) On the roles of repetitive DNA elements in the context of a unified genomic-epigenetic system. In: Van Speybroeck L, Van de Vijver G, Waele DD (eds) From Epigenesis to Epigenetics. The genome in context. Ann NY Acad Sci 981:154–188

    Google Scholar 

  • Sternberg R, Shapiro JA (2005) How repeated retroelements format genome function. Cytogenet Genome Res 110:108–116

    Article  Google Scholar 

  • Sugiyama T, Cam H, Verdel A et al. (2005) RNA-dependent RNA polymerase is an essential component of a self-inforcing loop coupling heterochromatin assembly to siRNA production. Proc Natl Acad Sci USA 102:151–157

    Article  Google Scholar 

  • Tomlinson RL, Ziegler TD, Supakorndej T et al. (2006) Cell cycle-regulated trafficking of human telomerase to telomeres. Mol Biol Cell 17:955–965

    Article  CAS  PubMed  Google Scholar 

  • Tourand Y, Bankhead T, Wilson SL et al. (2006) Differential telomere processing by borrelia telomere resolvases in vitro but not in vivo. J Bacteriol 188:7378–7386

    Article  CAS  PubMed  Google Scholar 

  • Vale R (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  CAS  PubMed  Google Scholar 

  • Vaughn MW, Martienssen R (2005) It’s a small RNA world, after all. Science 309:1525–1526

    Article  CAS  PubMed  Google Scholar 

  • Vetsigian K, Woese C, Goldenfeld N (2006) Collective evolution and the genetic code. Proc Natl Acad Sci USA 103:10696–10701

    Article  CAS  PubMed  Google Scholar 

  • Villarreal LP (2005) Viruses and the Evolution of Life. ASM Press, Washington

    Google Scholar 

  • Villarreal LP (2009) Origin of Group Identity: Viruses, Addiction and Cooperation. Springer, New York

    Google Scholar 

  • Villasante A, Abad JP, Mendez-Lago M (2007) Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proc Natl Acad Sci USA 104:10542–10547

    Article  CAS  PubMed  Google Scholar 

  • Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28:913–922

    Article  CAS  PubMed  Google Scholar 

  • Weber MJ (2006) Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genetics doi:10.1371/journal.pgen.0020205

    Google Scholar 

  • Witzany G (2006) Natural genome-editing competences of viruses. Acta Biotheor 54:235–253

    Article  PubMed  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    CAS  PubMed  Google Scholar 

  • Yang J, Malik HS, Eickbush TH (1999) Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc Natl Acad Sci USA 96:7847–7852

    Article  CAS  PubMed  Google Scholar 

  • Zemann A, Beckke A, Kiefmann M et al. (2006) Evolution of small nucleolar RNAs in nematodes. Nucleic Acids Res 34:2676–2685

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Witzany, G. (2010). Viral Origins of Telomeres and Telomerases. In: Biocommunication and Natural Genome Editing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3319-2_9

Download citation

Publish with us

Policies and ethics