Skip to main content

Waste to Renewable Energy: A Sustainable and Green Approach Towards Production of Biohydrogen by Acidogenic Fermentation

  • Chapter
  • First Online:

Abstract

The global impact of increasing energy demands, depleting reserves of fossil fuels and increasing pollution loads on the environment due to the utilization of energy produced from fossil fuels have received considerable notice in recent years. Generation of energy from fossil fuels is generally convenient but the depleting reserves and associated global warming are major problems. One potential alternative is a shift from fossil fuel to a hydrogen (H2) based economy. H2 is considered to be a clean energy carrier with high-energy yield (142.35 kJ/g) and upon combustion it produces only water. H2 can be produced by the biological routes of bio-photolysis, photo-fermentation and dark fermentation or by a combination of these processes. Dark fermentation offers the particular advantage of using wastewater as a substrate and mixed culture as catalyst. Wastewater contains high levels of biodegradable organic material with net positive energy. One way to reduce the cost of treatment is to generate bio-energy, such as H2 gas by metabolically utilizing organic matter, at the same time accomplishing treatment. This chapter mainly focuses on the evaluation of fermentative H2-generating processes utilizing wastewater as substrate and mixed culture as biocatalyst. A particular insight was also laid on to discuss the process based on important operating factors involved and to delineate some of the limitations. Various strategies such as multiple process integration, microbial electrolysis, polyhydroxyalkanoate (PHA) production, bioaugmentation, self-immobilization and metabolic engineering were discussed in overcoming some of the limitations in the direction of process enhancement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benemann, J. (1996) Hydrogen biotechnology: Progress and prospects. Nat Biotechnol 14, 1101–03.

    CAS  PubMed  Google Scholar 

  2. Hallenbeck, P.C., Benemann, J.R. (2002) Biological hydrogen production; fundamental and limiting processes. Int J Hydrogen Energy 27, 1185–93.

    CAS  Google Scholar 

  3. Vardar-Schara, G., Maeda, T., Wood, T.K. (2008) Metabolically engineered bacteria for producing hydrogen via fermentation. Microbial Biotechnol 1(2), 107–25.

    CAS  Google Scholar 

  4. Venkata Mohan, S. (2008) Fermentative hydrogen production with simultaneous wastewater treatment: Influence of pretreatment and system operating conditions. J Sci Industrial Res 67(11), 950–61.

    Google Scholar 

  5. Matsunaga, T., Takeyama, H. (2001) Screening of marine photosynthetic microorganisms and hydrogen production. Biohydrogen II 17, 185–94.

    Google Scholar 

  6. Srikanth, S., Venkata Mohan, S., Prathima Devi, M., Lenin Babu, M., Sarma, P.N. (2009) Effluents with soluble metabolites generated from acidogenic and methanogenic processes as substrate for additional hydrogen production through photo-biological process. Int J Hydrogen Energy 34, 1771–79.

    CAS  Google Scholar 

  7. Venkata Mohan, S. (2009). Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: process evaluation towards optimization. Int J Hydrogen Energy 34, 7460–74.

    Google Scholar 

  8. Levin, D.B., Islam, R., Cicek, N., Sparling, R. (2006) Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Process Biochem 31, 1496–503.

    CAS  Google Scholar 

  9. Chen, X., Sun, Y., Xiu, Z., Li, X., Zhang, D. (2006) Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int J Hydrogen Energy 31, 539–49.

    CAS  Google Scholar 

  10. Kapdan, I.K., Kargi, F. (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38, 569–82.

    CAS  Google Scholar 

  11. Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A., Domíguez-Espinosa, R. (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22, 477–85.

    CAS  PubMed  Google Scholar 

  12. Venkata Mohan, S., Chandrasekhara Rao, N., Prasad, K.K., Muralikrishna, P., Rama Rao, S., Sarma, P.N. (2005) Anaerobic treatment of complex chemical wastewater in a sequencing batch biofilm reactor: Process optimization and evaluation of factors interaction using the Taguchi dynamic DOE methodology. Biotechnol Bioeng 90(6), 732–45.

    CAS  PubMed  Google Scholar 

  13. Dinopoulou, G., Sterritt, R.M., Lester, J.N. (1988) Anaerobic acidogenesis of a complex wastewater kinetics of growth, inhibition, and product formation. Biotechnol Bioeng 31, 969–78.

    CAS  PubMed  Google Scholar 

  14. Klein, D.W., Prescott, L.M., Harley, J. (2005) Microbiology. New York: McGraw-Hill.

    Google Scholar 

  15. Kraemer, J.T., Bagley, D.M. (2007) Improving the yield from fermentative hydrogen production. Biotechnol Lett 29, 685–95.

    CAS  PubMed  Google Scholar 

  16. Venkata Mohan, S., Lenin Babu, B., Mohanakrishna, G., Sarma, P.N. (2009). Harnessing of biohydrogen by acidogenic fermentation of Citrus limetta peelings: Effect of extraction procedure and pretreatment of biocatalyst. Int J Hydrogen Energy 34, 6149–56.

    Google Scholar 

  17. Vignais, P.M., Magnin, J.P., Willison, J.C. (2006) Increasing biohydrogen production by metabolic engineering. Int J Hydrogen Energy 31, 1478–83.

    CAS  Google Scholar 

  18. Orskav, E.R., Flatt, W.P., Moe, P.W. (1968) Fermentation balance approach to estimate extent of fermentation and efficiency of volatile fatty acid formation in ruminants. J Dairy Sci 51, 1429–35.

    Google Scholar 

  19. Rittmann, B.E. (2008) Opportunities for Renewable Bioenergy Using Microorganisms. Biotechnol Bioeng 100(2), 203–12.

    CAS  PubMed  Google Scholar 

  20. Energy Information Administration. (2005) Annual Energy Outlook: With Projection to 2030. Washington, DC: US Department of Energy.

    Google Scholar 

  21. Venkata Mohan, S., Bhaskar, Y.V., Krishna, T.M., Chandrasekhara Rao, N., Lalit Babu, V., Sarma, P.N. (2007) Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: Influence of fermentation pH and substrate composition. Int J Hydrogen Energy 32, 2286– 95.

    Google Scholar 

  22. Vijaya Bhaskar, Y., Venkata Mohan, S., Sarma, P.N. (2008) Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm conFig d sequencing batch reactor. Biores Technol 99, 6941–48.

    CAS  Google Scholar 

  23. Venkata Mohan, S., Mohankrishna, G., Sarma, P.N. (2008) Integration of acidogenic and methanogenic processes for simultaneous production of biohydrogen and methane from wastewater treatment. Int J Hydrogen Energy 33, 2156–66.

    Google Scholar 

  24. Venkata Mohan, S., Lalit Babu, V., Srikanth, S., Sarma, P.N. (2008) Bio-electrochemical evaluation of fermentative hydrogen production process with the function of feeding pH. Int J Hydrogen Energy 33(17), 4533–46.

    CAS  Google Scholar 

  25. Venkata Mohan, S., Mohanakrishna, G., Veer Raghuvulu, S., Sarma, P.N. (2007) Enhancing biohydrogen production from chemical wastewater treatment in anaerobic sequencing batch biofilm reactor (AnSBBR) by bioaugmenting with selectively enriched kanamycin resistant anaerobic mixed consortia. Int J Hydrogen Energy 32, 3284–92.

    Google Scholar 

  26. Venkata Mohan, S., Bhaskar, Y.V., Sarma, P.N. (2007) Biohydrogen production from chemical wastewater treatment by selectively enriched anaerobic mixed consortia in biofilm conFig d reactor operated in periodic discontinuous batch mode. Water Res 41, 2652–64.

    CAS  PubMed  Google Scholar 

  27. Idania, V.-V., Sparling, R., Risbey, D., Noemi, R.-S., He´cto, M., Poggi-Varaldo, H.M. (2005) Hydrogen generation via anaerobic fermentation of paper mill wastes. Biores Technol 96, 1907–13.

    Google Scholar 

  28. Gustavo, D.-V., Felipe, A.-M., Antonio de, L.-R., Elías, R.-F. (2008) Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: Influence of initial substrate concentration and pH. Int J Hydrogen Energy 33, 4989–97.

    Google Scholar 

  29. Ren, N.Q., Chua, H., Chan, S.Y., Tsang, Y.F., Wang, Y.J., Sin, N. (2007) Assessing optimal fermentation type for bio-hydrogen production in continuous flow acidogenic reactors. Biores Technol 98, 1774–80.

    CAS  Google Scholar 

  30. Venkata Mohan, S., Lalit Babu, V., Sarma, P.N. (2008) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Biores Technol 99, 59–67.

    CAS  Google Scholar 

  31. Venkata Mohan, S., Lalit Babu, V., Sarma, P.N. (2007) Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate. Enz Microbial Technol 41(4), 506–15.

    Google Scholar 

  32. Ferchichi, M., Crabbe, V., Gil, G.-H., Hintz, W., Almadidy, A. (2005) Influence of initial pH on hydrogen production from cheese whey. J Biotechnol 120, 402–09.

    CAS  PubMed  Google Scholar 

  33. Yang, P., Zhang, R., McGarvey, J.A., Benemann, J.R. (2007) Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrogen Energy 32, 4761–71.

    CAS  Google Scholar 

  34. Chang, J., Chou, C., Ho, C., Chen, W., Lay, J., Huang, C. (2008) Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production. Int J Hydrogen Energy 33, 5137–46.

    CAS  Google Scholar 

  35. Yu, H., Zhu, Z., Hu, W., Zhang, H. (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 27, 1359–65.

    CAS  Google Scholar 

  36. Froylán, M.E.-E., Carlos, P.-O., Jose, N.-C., Yolanda, G.-G., André, B., Humberto, G.-P. (2009) Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila: The effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane. Biomass Bioenergy 33, 14–20.

    Google Scholar 

  37. Vatsala, T.M., Mohan Raj, S., Manimaran, A. (2008) A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture. Int J Hydrogen Energy 33, 5404–15.

    CAS  Google Scholar 

  38. Venkata Mohan, S., Mohanakrishna, G., Ramanaiah, S.V., Sarma, P.N. (2008) Simultaneous biohydrogen production and wastewater treatment in biofilm conFig d anaerobic periodic discontinuous batch reactor using distillery wastewater. Int J Hydrogen Energy 33(2), 550–58.

    CAS  Google Scholar 

  39. Vijayaraghavan, K., Ahmad, D. (2006) Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. Int J Hydrogen Energy 31, 1284–91.

    CAS  Google Scholar 

  40. O-Thong, S., Prasertsan, P., Birkeland, N.-K. (2009) Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. Biores Technol 100, 909–18.

    CAS  Google Scholar 

  41. Wu, T.Y., Mohammad, A.W., Md Jahim, J., Anuar, N. (2009) A holistic approach to managing palm oil mill effluent (POME): Biotechnological advances in the sustainable reuse of POME. Biotechnol Adv 27, 40–52.

    PubMed  Google Scholar 

  42. Yang, H., Shao, P., Lu, T., Shen, J., Wang, D., Xu, Z., Yuan, X. (2006) Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria. Int J Hydrogen Energy 31, 1306–13.

    CAS  Google Scholar 

  43. Sivaramakrishna, D., Sreekanth, D., Himabindu, V., Anjaneyulu, Y. (2009) Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora. Renew Energy 34, 937–40.

    CAS  Google Scholar 

  44. Gómez, X., Morán, V., Cuetos, M.J., Sánchez, M.E. (2006) The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: A two-phase process. J Power Sources 157, 727–32.

    Google Scholar 

  45. Chen, S.-D., Lee, K.-S., Lo, Y.-C., Chen, W.-M., Wu, J.-F., Lin, C.-Y., Chang, J.-S. (2008) Batch and continuous biohydrogen production from starch hydrolysate by Clostridium species. Int J Hydrogen Energy 33(7), 1803–12.

    CAS  Google Scholar 

  46. Zhang, T., Liu, H., Fang, H.H.P. (2003) Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Manag 69, 149–56.

    Google Scholar 

  47. Ntaikou, I., Kourmentza, C., Koutrouli, E.C., Stamatelatou, K., Zampraka, A., Kornaros, M., Lyberatos, G. (2009) Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Biores Technol doi:10.1016/j.biortech. 2008.12.001.

    Google Scholar 

  48. Van Ginkel, S.W., Oh, S., Logan, B.E. (2005) Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrogen Energy 30, 1535–42.

    Google Scholar 

  49. Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K., Yu, Z. (2009) Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int J Hydrogen Energy 34, 812–20.

    Google Scholar 

  50. Kim, S.-H., Han, S.-K., Shin, H.-S. (2004) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrogen Energy 29, 1607–16.

    CAS  Google Scholar 

  51. Venkata Mohan, S., Srikanth, S., Dinakar, P., Sarma, P.N. (2008) Photo-biological hydrogen production by the adopted mixed culture: Data enveloping analysis. Int J Hydrogen Energy 33(2), 559–69.

    Google Scholar 

  52. Wang, C.C., Chang, C.W., Chu, C.P., Lee, D.J., Chang, B.V., Liao, C.S., et al. (2003) Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res 37, 2789–93.

    CAS  PubMed  Google Scholar 

  53. Liu, D., Min, B., Angelidaki, I. (2008) Biohydrogen production from household solid waste (HSW) at extreme-thermophilic temperature (70°C): Influence of pH and acetate concentration. Int J Hydrogen Energy 33, 6985–92.

    CAS  Google Scholar 

  54. Lee, Z.-K., Li, S.-L., Lin, J.-S., Wang, Y.-H., Kuo, P.-C., Cheng, S.-S. (2008) Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition. Int J Hydrogen Energy 33, 5234–41.

    CAS  Google Scholar 

  55. Venkata Mohan, S., Mohanakrishna, G., Goud, R.K., Sarma, P.N. (2009) Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization. BioresTechnol doi:10.1016/j.biortech. 2008.12.059.

    Google Scholar 

  56. Fan, Y.-T., Xing, Y., Ma, H., Pan, C., Hou, H. (2008) Enhanced cellulose-hydrogen production from corn stalk by lesser panda manure. Int J Hydrogen Energy 33, 6058–65.

    CAS  Google Scholar 

  57. Hussy, I., Hawkes, F.R., Dinsdale, R., Hawkes, D.L. (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84, 619–26.

    CAS  PubMed  Google Scholar 

  58. Fan, Y., Zhang, G., Guo, X., Xing, Y., Fan, M. (2006) Biohydrogen-production from beer lees biomass by cow dung compost. Biomass Bioenergy 30, 493–96.

    Google Scholar 

  59. Argun, H., Kargi, F., Kapdan, I.K., Oztekin, R. (2008) Batch dark fermentation of powdered wheat starch to hydrogen gas: Effects of the initial substrate and biomass concentrations. Int J Hydrogen Energy 33, 6109–15.

    CAS  Google Scholar 

  60. Kyazze, G., Dinsdale, R., Hawkes, F.R., Guwy, A.J., Premier, G.C., Donnison, I.S. (2008) Direct fermentation of fodder maize, chicory fructans and perennial ryegrass to hydrogen using mixed microflora. Biores Technol 99, 8833–39.

    CAS  Google Scholar 

  61. Evvyernie, D., Morimoto, K., Karita, S., Kimura, T., Sakka, K., Ohmiya, K. (2001) Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21. J Biosci Bioeng 91, 339–43.

    CAS  PubMed  Google Scholar 

  62. Tang, G.-L., Huang, J., Sun, Z.-J., Tang, Q.-Q., Yan, C.-H., Liu, G.-Q. (2008) Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: Influence of fermentation temperature and pH. J Biosci Bioeng 106, 80–87.

    CAS  PubMed  Google Scholar 

  63. Vijayaraghavan, K., Ahmad, D., Soning, C. (2007) Bio-hydrogen generation from mixed fruit peelwaste using anaerobic contact filter. Int J Hydrogen Energy 32, 4754–60.

    CAS  Google Scholar 

  64. Zhu, H., Stadnyk, A., Béland, M., Seto, P. (2008) Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Biores Technol 99, 5078–84.

    CAS  Google Scholar 

  65. Yokoi, H., Saitsu, A.S., Uchida, H., Hirose, J., Hayashi, S., Takasaki, Y. (2001) Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 91, 58–63.

    CAS  PubMed  Google Scholar 

  66. Magnusson, L., Islam, R., Sparling, R., Levin, D., Cicek, N. (2008) Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int J Hydrogen Energy 33, 5398–403.

    CAS  Google Scholar 

  67. Ren, N., Wang, A., Gao, L., Xin, L., Lee, D., Su, A. (2008) Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks using isolated cultures. Int J Hydrogen Energy 33, 5250–55.

    CAS  Google Scholar 

  68. Lin, C., Hung, W. (2008) Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures. Int J Hydrogen Energy 33, 3660–67.

    CAS  Google Scholar 

  69. Ivanova, G., Rakhely, G., Kovacs, K.L. (2008) Hydrogen production from biopolymers by Caldicellulosiruptor saccharolyticus and stabilization of the system by immobilization. Int J Hydrogen Energy 33, 6953–61.

    CAS  Google Scholar 

  70. Saratale, G.D., Chen, S., Lo, Y., Saratale, R.G., Chang, J. (2008) Outlook of biohydrogen production from ligno-cellulosic feed stock using dark fermentation- A review. J Sci Indi Res 67, 962–79.

    CAS  Google Scholar 

  71. Venkata Mohan, S., Veer Raghuvulu, S., Mohanakrishna, G., Srikanth, S., Sarma, P.N. (2009) Optimization and evaluation of fermentative hydrogen production and wastewater treatment processes using data enveloping analysis (DEA) and Taguchi design of experimental (DOE) methodology. Int J Hydrogen Energy 34, 216–26.

    Google Scholar 

  72. Zhu, H., Beland, M. (2006) Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int J Hydrogen Energy 31, 1980–88.

    CAS  Google Scholar 

  73. Kim, J., Park, C., Tak-Hyun, K., Lee, M., Kim, S., Seung-Wook, K., Lee, J. (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioengng 95, 271–75.

    CAS  Google Scholar 

  74. Sparling, R., Risbey, D., Poggi-Varaldo, H.M. (1997) Hydrogen production from inhibited anaerobic composters. Int J Hydrogen Energy 22, 563–66.

    CAS  Google Scholar 

  75. van Ginkel, S., Sung, S.W., Lay, J.J. (2001) Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35, 4726–30.

    CAS  PubMed  Google Scholar 

  76. Logan, B.E., Oh, S.E., van Ginkel, S., Kim, I.S. (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36, 2530–35.

    CAS  PubMed  Google Scholar 

  77. Futai, M., Tsuchiya, T. (1987) In Ion Transport in Prokaryotes. Rosen, B., and Silver, S. (eds), San Diego: Academic Press, Inc., 3–83.

    Google Scholar 

  78. Van Ginkel, S., Logan, B.E. (2005) Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ Sci Technol 39, 9351–56.

    PubMed  Google Scholar 

  79. Liu, Y., Boone, D.R., Sleat, R., Mah, R.A. (1985) Methanosarcina mazei LYC-a new methanogenic isolate which produces a disaggregating enzyme. Appl Environ Microbiol 57, 2104–08.

    Google Scholar 

  80. Roy Chowdhury, S., Cox, D., Levandowsky, M. (1988) Production of hydrogen by microbial fermentation. Int J Hydrogen Energy 13, 407–10.

    CAS  Google Scholar 

  81. Fang, H.H.P., Li, C., Zhang, T. (2006) Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy 31, 683–92.

    CAS  Google Scholar 

  82. Ciudad, R., González, C., Bornhardt, C., Antileo, C. (2007) Modes of operation and pH control as enhancement factors for partial nitrification with oxygen transport limitation. Wat Res 41, 4621–29.

    CAS  Google Scholar 

  83. Bitton, G. (1994) Wastewater Microbiology. NewYork: Wiley-Liss Inc.

    Google Scholar 

  84. Mizuno, O., Li, Y.Y., Noike, T. (1998) The behavior of sulfate-reducing bacteria in acidogenic phase of anaerobic digestion. Water Res 32, 1626–34.

    CAS  Google Scholar 

  85. Lin, C.-Y., Chen, H.-P. (2006) Sulfate effect on fermentative hydrogen production using anaerobic mixed microflora. Int J Hydrogen Energy 31, 953–60.

    CAS  Google Scholar 

  86. Hawkes, F.R., Hussy, I., Kyazze, G., Dinsdale, R., Hawkes, D.L. (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int J Hydrogen Energy 32, 172–84.

    CAS  Google Scholar 

  87. Ueno, Y., Haruta, S., Ishii, M., Igarashi, Y. (2001) Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora. J Biosci Bioeng 92, 397–400.

    CAS  PubMed  Google Scholar 

  88. Kotsopoulos, T.A., Zeng, R.J., Angelidaki, I. (2006) Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70°C). Biotech Bioeng 94, 296–302.

    CAS  Google Scholar 

  89. Yokoyama, H., Ohmori, H., Waki, M., Ogino, A., Tanaka, Y. (2009) Continuous hydrogen production from glucose by using extreme thermophilic anaerobic microflora. J Biosci Bioeng 107, 64–66.

    CAS  PubMed  Google Scholar 

  90. Khanal, S.K., Chen, W.-H., Li, L., Sung, S. (2005) Biological hydrogen production: Effects of pH and intermediate products. Int J Hydrogen Energy 29, 1123–31.

    Google Scholar 

  91. Wang, J., Wan, W. (2008) Factors influencing fermentative hydrogen production: A review. Int J Hydrogen Energy doi:10.1016/j.ijhydene. 2008.11.015.

    Google Scholar 

  92. Lalit Babu, V., Venkata Mohan, S., Sarma, P.N. (2009) Influence of reactor configuration on fermentative hydrogen production during wastewater. Int J Hydrogen Energy 34, 3305–12.

    Google Scholar 

  93. Venkata Mohan, S., Lalit Babu, V., Bhaskar, Y.V., Sarma, P.N. (2007) Influence of recirculation on the performance of anaerobic sequencing batch biofilm reactor (AnSBBR) treating hypersaline composite chemical wastewater. Biores Technol 98(7), 1373–79.

    Google Scholar 

  94. Venkata Mohan, S., Chandrasekhar Rao, N., Sarma, P.N. (2007) Composite chemical wastewater treatment by biofilm conFig d periodic discontinuous batch reactor operated in anaerobic metabolic function. Enz Microbial Technol 40(5), 1398–406.

    Google Scholar 

  95. Wilderer, P.A., Roske, I., Ueberschar, A., Davids, L. (1993) Continuous flow and sequencing batch operation of biofilm reactors: A comparative study of shock loadings responses. Biofoulings 6, 295–304.

    CAS  Google Scholar 

  96. Kumar, N., Das, D. (2001) Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29, 280–87.

    CAS  Google Scholar 

  97. Yokoi, H., Tokushige, T., Hirose, J., Hayashi, S., Takasaki, Y. (1997) Hydrogen production by immobilized cells of aciduric Enterobacter aerogenes strain HO-39. J Ferment Bioeng 83, 481–84.

    CAS  Google Scholar 

  98. Chandrasekhara Rao, N., Venkata Mohan, S., Muralikrishna, P., Sarma, P.N. (2005) Treatment of composite chemical wastewater by GAC-Biofilm conFig d sequencing batch reactor (SBGR) operated in aerobic environment. J Haz Mater 124, 59–67.

    Google Scholar 

  99. Venkata Mohan, S., Chandrasekhara Rao, N., Prasad, K.K., Sarma, P.N. (2005) Bioaugmentation of anaerobic sequencing batch biofilm reactor (ASBBR) with immobilized sulphate reducing bacteria (SRB) for treating sulfate bearing chemical wastewater. Proc Biochem 40(8), 2849–57.

    Google Scholar 

  100. Chen, W., Sung, S., Chen, S. (2009) Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects. Int J Hydrogen Energy 34, 227–34.

    CAS  Google Scholar 

  101. Wu, J.H., Lin, C.Y. (2004) Biohydrogen production by mesophilic fermentation of food wastewater. Water Sci Technol 49, 223–28.

    CAS  PubMed  Google Scholar 

  102. Ruzicka, M. (1996) The effect of hydrogen on acidogenic glucose cleavage. Wat Res 30, 2447–51.

    CAS  Google Scholar 

  103. Lin, C.Y., Lay, C.H. (2004) Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrogen Energy 29, 41–45.

    CAS  Google Scholar 

  104. Wang, B., Wan, W., Wang, J. (2009) Effect of ammonia concentration on fermentative hydrogen production by mixed cultures. Biores Technol 100, 1211–13.

    CAS  Google Scholar 

  105. Bisaillon, A., Turcot, J., and Hallenbeck, P.C. (2006) The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int J Hydrogen Energy 31, 1504–08.

    CAS  Google Scholar 

  106. Chen, Y., Cheng, J.J., Creamer, K.S. (2008) Inhibition of anaerobic digestion process: A review. Biores Technol 99, 4044–64.

    CAS  Google Scholar 

  107. Salerno, M.B., Park, W., Zuo, Y., Logan, B.E. (2006) Inhibition of biohydrogen production by ammonia. Wat Res 40, 1167–72.

    CAS  Google Scholar 

  108. Lin, C.Y., Lay, C.H. (2004) Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 29, 275–81.

    CAS  Google Scholar 

  109. USDEH. (2007) Fuel Cells and Infrastructure Technologies Program, Multi-Year Research, Development and Demonstration Plan, US Department of Energy.

    Google Scholar 

  110. Srikanth, S., Venkata Mohan, S., Prathima Devi, M., Dinikar, P., Sarma, P.N. (2008) Acetate and butyrate as substrates for hydrogen production through photo-fermentation using mixed culture: Optimization of process parameters and combined process evaluation. Int J Hydrogen Energy 34, 7513–22.

    Google Scholar 

  111. Logan, B.E. (2004) Biologically extracting energy from wastewater: Biohydrogen production and microbial fuel cells. Environ Sci Technol 38, 160A–67A.

    CAS  PubMed  Google Scholar 

  112. Zheng, X.J., Yu, H.Q. (2005) Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. J Environ Manag 74, 65–70.

    CAS  Google Scholar 

  113. Nath, K., Kumar, A., Das, D. (2005) Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11. Appl Microbiol Biotechnol 68, 533–41.

    CAS  PubMed  Google Scholar 

  114. Ueno, Y., Fukui, H., Goto, M. (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol 41(4), 1413–19.

    CAS  PubMed  Google Scholar 

  115. Ding, H., Wang, J. (2008) Responses of the methanogenic reactor to different effluent fractions of fermentative hydrogen production in a phase-separated anaerobic digestion system. Int J Hydrogen Energy 33, 6993–7005.

    CAS  Google Scholar 

  116. Cheng, S., Logan, B.E. (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Nat Acad Sci 104, 18875–73.

    CAS  PubMed  Google Scholar 

  117. Rozendal, R.A., Hamelers, H.V.M., Euverink, G.J.W., Metz, S.J., Buisman, C.J.N. (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31, 1632–40.

    CAS  Google Scholar 

  118. Ditzig, J., Liu, H., Logan, B.E. (2007) Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int J Hydrogen Energy 32, 2296–304.

    CAS  Google Scholar 

  119. Tartakovsky, B., Manuel, M.-F., Wang, H., Guiot, S.R. (2009) High rate membrane-less microbial electrolysis cell for continuous H2 production. Int J Hydrogen Energy 34, 672–7.

    CAS  Google Scholar 

  120. Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., Shah, S. (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants- A review. Biotechnol Adv 25, 148–75.

    CAS  PubMed  Google Scholar 

  121. Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., Gu, G. (2006) Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ Sci Technol 40(6), 2025–29.

    CAS  PubMed  Google Scholar 

  122. Tong, J., Chen, Y. (2007) Enhanced biological phosphorus removal driven by shortchain fatty acids produced from waste activated sludge alkaline fermentation. Environ Sci Technol 41(20), 7126–30.

    CAS  PubMed  Google Scholar 

  123. Van Loosdrecht, M.C.M., Pot, M.A., Heijnen, J.J. (1997) Importance of bacterial storage polymers in bioprocesses. Wat Sci Technol 35(1), 41–47.

    Google Scholar 

  124. Choi, J., Lee, S.Y. (1997) Process analysis and economic evaluation for poly(3- hydroxybutyrate) production by fermentation. Bioprocess Eng 17, 335–42.

    CAS  Google Scholar 

  125. Venkata Mohan, S., Falkentoft, C., Nancharaiah, Y.V., McSwain, B.S., Wattiau, P., Wilderer, P.A., Wuertz, S., Hausner, M. (2009) Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid. Biores Technol 100(5), 1746–53.

    CAS  Google Scholar 

  126. Venkata Mohan, S., Mohanakrishna, G., Reddy, S.S., Raju, B.D., Rama Rao, K.S., Sarma, P.N. (2008) Self-immobilization of acidogenic mixed consortia on mesoporous material (SBA-15) and activated carbon to enhance fermentative hydrogen production. Int J Hydrogen Energy 33, 6133–42.

    Google Scholar 

  127. http://en.wikipedia.org/wiki/NADH_dehydrogenase

  128. Nelson, D.L., Cox, M.M. (2005) Lehninger Principles of Biochemistry, fourth Ed. New York: WH Freeman & Co.

    Google Scholar 

  129. Wang, J., Wan, W. (2008) Influence of Ni2+ concentration on biohydrogen production. Biores Technol 99, 8864–68.

    CAS  Google Scholar 

  130. Frey, M. (2002) Hydrogenases: Hydrogen-activating enzymes. Chem Biochem 3, 153–60.

    CAS  Google Scholar 

  131. Casalot, L., Rousset, M. (2001) Maturation of the [Ni–Fe] hydrogenases. Trend Microbiol 9, 228–37.

    CAS  Google Scholar 

  132. de Lacey, A.L., Fernández, V.M., Rousset, M. (2005) Native and mutant nickel–iron hydrogenases: Unraveling structure and function. Coord Chem Rev 249, 1596–608.

    Google Scholar 

  133. Kim, S., Seol, E., Raj, S.M., Park, S., Oh, Y.K., Ryu, D.D.Y. (2008) Various hydrogenases and formate-dependent hydrogen production in Citrobacter amalonaticus Y19. Int J Hydrogen Energy 33, 1509–15.

    CAS  Google Scholar 

  134. Lin, C.Y., Lay, C.H. (2005) A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 30, 285–92.

    CAS  Google Scholar 

  135. Zhang, Y., Liu, G., Shen, J. (2005) Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations. Int J Hydrogen Energy 30, 855–60.

    CAS  Google Scholar 

  136. Yang, H., Shen, J. (2006) Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch. Int J Hydrogen Energy 31, 2137–46.

    CAS  Google Scholar 

  137. Lee, D., Li, Y., Oh, Y., Kim, M., Noike, T. (2009) Effect of iron concentration on continuous H2 production using membrane bioreactor. Int J Hydrogen Energy 34, 1244–52.

    CAS  Google Scholar 

  138. Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M., Yukawa, H. (2007) Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process. Appl Microbiol Biotechnol 74, 754–60.

    CAS  PubMed  Google Scholar 

  139. Kabir, M.M., Ho, P.Y., Shimizu, K. (2005) Effect of ldhA gene deletion on the metabolism of Escherichia coli based on gene expression, enzyme activities, intracellular metabolite concentrations, and metabolic flux distribution. Biochem Eng J 26, 1–11.

    CAS  Google Scholar 

  140. Kumar, N., Ghosh, A., Das, D. (2001) Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae. Biotechnol Lett 23(7), 537–41.

    CAS  Google Scholar 

  141. Liu, X., Zhu, Y., Yang, S.T. (2006) Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme Microbial Technol 38, 521–28.

    CAS  Google Scholar 

  142. Penfold, D.W., Forster, C.F., Macaskie, L.E. (2003) Increased hydrogen production by Escherichia coli strain HD701 in comparison with the wild-type parent strain MC4100. Enz Microbial Technol 33, 185–89.

    CAS  Google Scholar 

  143. Morimoto, K., Kimura, T., Sakka, K., Ohmiya, K. (2005) Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol Lett 246, 229–34.

    CAS  PubMed  Google Scholar 

  144. Liu, X., Zhu, Y., Yang, S.T. (2006) Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Prog 22, 1265–75.

    CAS  PubMed  Google Scholar 

  145. Zhao, H., Ma, K., Lu, Y., Zhang, C., Wang, L., Xing, X.-H. (2009) Cloning and knockout of formate hydrogen lyase and H2-uptake hydrogenase genes in Enterobacter aerogenes for enhanced hydrogen production. Int J Hydrogen Energy 34, 186–94.

    Google Scholar 

  146. Maeda, T., Sanchez-Torres, V., Wood, T.K. (2007) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77, 879–90.

    CAS  PubMed  Google Scholar 

  147. Venkata Mohan, S., Srikanth, S., Sarma, P.N. (2009) Non-catalyzed microbial fuel cell (MFC) with open air cathode for bioelectricity generation during acidogenic wastewater treatment. Bioelectrochemistry 75, 130–5.

    Google Scholar 

  148. Venkata Mohan, S., Sarvanan, R., Veer Raghuvulu, S., Mohankrishna, G., Sarma, P.N. (2008) Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte. BioresTechnol 99(3), 596–603.

    CAS  Google Scholar 

  149. Venkata Mohan, S., Veer Raghuvulu, S., Srikanth, S., Sarma, P.N. (2007) Bioelectricity production by meditorless microbial fuel cell (MFC) under acidophilic condition using wastewater as substrate: Influence of substrate loading rate. Curr Sci 92(12), 1720–26.

    Google Scholar 

  150. Venkata Mohan, S., Mohanakrishna, G., Srikanth, S., Sarma, P.N. (2008) Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia. Fuel 87, 2667–76.

    Google Scholar 

  151. Venkata Mohan, S., Mohanakrishna, G., Reddy, B.P., Sarvanan, R., Sarma, P.N. (2008) Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem Eng J 39, 121–30.

    CAS  Google Scholar 

  152. Venkata Mohan, S., Veer Raghuvulu, S., Sarma, P.N. (2008) Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane. Biosens Bioelectron 23, 1326–32.

    CAS  PubMed  Google Scholar 

  153. Venkata Mohan, S., Mohanakrishna, G., Sarma, P.N. (2008) Effect of anodic metabolic function on bioelectricity generation and substrate degradation in single chambered microbial fuel cell. Environ Sci Technol 42, 8088–94.

    CAS  PubMed  Google Scholar 

  154. Venkata Mohan, S., Veer Raghuvulu, S., Sarma, P.N. (2008) Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia. Biosens Bioelectron 24(1), 41–47.

    CAS  PubMed  Google Scholar 

  155. Venkata Mohan, S., Veer Raghuvulu, S., Dinakar, P., Sarma, P.N. (2009) Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load. Biosens Bioelectron 24, 2021–7.

    Google Scholar 

  156. Veer Raghuvulu, S., Venkata Mohan, S., Goud, R.K., Sarma, P.N. (2009) Anodic pH microenvironment influence on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochem Commun 11, 371–75.

    Google Scholar 

  157. Veer Raghuvulu, S., Venkata Mohan, S., Reddy, M.V., Mohanakrishna, G., Sarma, P.N. (2009) Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. Int J Hydrogen Energy 34, 7547–54.

    Google Scholar 

  158. Venkata Mohan, S., Mohanakrishna, G., Sarma, P.N. (2009) Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. Biores Technol doi:10.1016/j.biortech.2009.09.005.

    Google Scholar 

Download references

Acknowledgments

I acknowledge Dr. J.S. Yadav, Director, IICT and Dr. P.N. Sarma, Head, BEEC, IICT for their encouragement and inputs of V. Lalit Babu, G. Mohanakrishna, S. Veer Raghuvulu, S. Srikanth, B. Purushotam Reddy, M.V. Reddy, M. Prathima Devi, R. Kannaiah Goud and M. Lenin Babu. Biohydrogen and bioelectricity research in BEEC is supported by Department of Biotechnology (DBT), Government of India in the form of research grants (BT/PR/4405/BCE/08/312/2003 and BT/PR8972/GBD/27/56/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Venkata Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mohan, S.V. (2010). Waste to Renewable Energy: A Sustainable and Green Approach Towards Production of Biohydrogen by Acidogenic Fermentation. In: Singh, O., Harvey, S. (eds) Sustainable Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3295-9_7

Download citation

Publish with us

Policies and ethics