Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Carbon Sequestration in Forest Ecosystems

Abstract

Forest ecosystems cover the largest part of ice-free land surface among all terrestrial ecosystems. Trees, the main component of forest ecosystems, contain the largest stock or absolute quantity of the living forest biomass. The total forest biomass is about 677 petagram (Pg), and trees constitute 80% of the world’s biomass (Kindermann et al. 2008). Forest ecosystems absorb large amounts of CO2 from the atmosphere via photosynthesis, and return a large part of the fixed carbon (C) back to the atmosphere through auto- and heterotrophic respirations. However, a small fraction of assimilated C is stored in above- and belowground biomass, litter, and soil. About half of the terrestrial C sink is located in forests (Canadell et al. 2007; Fig. 1.2). Based on FAO statistics, about 234 Pg C are stored aboveground in forests, 62 Pg C belowground, 41 Pg C in dead wood, 23 Pg C in litter, and 398 Pg C in forest soils (Kindermann et al. 2008). Forest C data are, however, highly uncertain as, for example, up to 691 Pg C may be stored in forest plant biomass and up to 968 Pg C in forest soils to 1-m depth (Fig. 1.2). Yet, more C is stored in forests than in the atmospheric pool which is estimated to contain about 817 Pg C. In particular, pristine, undisturbed, old-growth forests accumulate large amounts of C and are, therefore, important components of the terrestrial C cycle. Historically, the conversion of forest ecosystems to other land uses (e.g., agricultural and urban) and forest degradation have been major threats to the forest C stock. However, with unprecedented increases in atmospheric CO2 emissions from burning of fossil fuel and deforestation accompanied by unprecedented global population growth, direct and indirect human-induced pressures on the C stock of forests are dramatically increasing. Specifically, global climate change may weaken the C uptake by forest ecosystems and render forests into a C source which will then have a positive feedback on the global climate. While C sequestration in forest ecosystems cannot stop increases in atmospheric CO2 originating from fossil fuel combustion, enhancing and strengthening C-fluxes into stable forest C pools can offset anthropogenic CO2 emissions and minimize risks of abrupt climate change (ACC). Thus, C sequestration, the transfer and secure storage of atmospheric CO2 into long-lived C pools such as forest ecosystems, buys time for the development and implementation of low-C technologies and de-carbonization of the global economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JD, Melillo JM (2001) Terrestrial ecosystems. Academic, San Diego, CA

    Google Scholar 

  • Allen CD (2009) Climate-induced forest dieback: an escalating global phenomenon? Unasylva 60:43–49

    Google Scholar 

  • Allen MR, Gillett NP, Kettleborough JA, Hegerl G, Schnur R, Stott PA, Boer G, Covey C, Delworth TL, Jones GS, Mitchell JFB, Barnett TP (2006) Quantifying anthropogenic influence on recent near-surface temperature change. Surv Geophys 27:491–544

    Article  Google Scholar 

  • Alo CA, Wang G (2008) Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. J Geophys Res 113:G01004. doi:10.1029/2007JG000528

    Article  Google Scholar 

  • Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv Agron 100:155–250

    Article  CAS  Google Scholar 

  • Asner GP, Knapp DE, Broadbent EN, Oliveira PJC, Keller M, Silva JN (2005) Selective logging in the Brazilian Amazon. Science 310:480–482

    Article  CAS  PubMed  Google Scholar 

  • Barker T, Bashmakov I, Alharthi A, Amann M, Cifuentes L, Drexhage J, Duan M, Edenhofer O, Flannery B, Grubb M, Hoogwijk M, Ibitoye FI, Jepma CJ, Pizer WA, Yamaji K (2007) Mitigation from a cross-sectoral perspective. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 620–690

    Google Scholar 

  • Barnes BV, Zak DR, Denton SR, Spurr SH (1998) Forest ecology. Wiley, New York

    Google Scholar 

  • Berner RA (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323–326

    Article  CAS  PubMed  Google Scholar 

  • Bombelli A, Henry M, Castaldi S, Adu-Bredu S, Arneth A, de Grandcourt A, Grieco E, Kutsch WL, Lehsten V, Rasile A, Reichstein M, Tansey K, Weber U, Valentini R (2009) The sub-Saharan Africa carbon balance, an overview. Biogeosci Discuss 6:2085–2123

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CMD, DeFries R, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van Der Werf GR, Pyne SP (2009) Fire in the Earth system. Science 324:481–484

    Article  CAS  PubMed  Google Scholar 

  • Bravo F, del Río M, Bravo-Oviedo A, Del Peso C, Montero G (2008) Forest management strategies and carbon sequestration. In: Bravo F, LeMay V, Jandl G, von Gadow K (eds) Managing forest ecosystems: the challenge of climate change. Springer, New York, pp 179–194

    Chapter  Google Scholar 

  • Broecker WS (1987) Unpleasant surprises in the greenhouse? Nature 328:123–126

    Article  CAS  Google Scholar 

  • Brook EJ (2009) Atmospheric carbon footprints? Nat Geosci 2:170–172

    Article  CAS  Google Scholar 

  • Bryant D, Nielsen D, Tangley L (1997) The last frontier forests: ecosystems and economics on the edge. World Resources Institute, Washington, DC

    Google Scholar 

  • Cailleau G, Braissant O, Verrecchia EP (2004) Biomineralization in plants as a long-term carbon sink. Naturwissenschaften 91:191–194

    Article  CAS  PubMed  Google Scholar 

  • Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104:18866–18870

    Article  CAS  PubMed  Google Scholar 

  • Chabbi A, Rumpel C (2009) Organic matter dynamics in agro-ecosystems – the knowledge gaps. Eur J Soil Sci 60:153–157

    Article  CAS  Google Scholar 

  • Clawson M (1979) Forests in the long sweep of American history. Science 204:1168–1174

    Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Intergovernmental panel on climate change (ed) Climate Change 2007: the physical science basis, Chapter 7. Cambridge University Press, Cambridge

    Google Scholar 

  • European Council (2007) Limiting global climate change to 2ºC – the way ahead for 2020 and beyond. Communication from the Commissions to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Region

    Google Scholar 

  • Eusterhues K, Rumpel C, Kögel-Knabner I (2007) Composition and radiocarbon age of HF-resistant soil organic matter in a Podzol and a Cambisol. Org Geochem 38:1356–1372

    Article  CAS  Google Scholar 

  • FAO (Food and Agricultural Organization of the United Nations) (2001) Global forest resources assessment 2000-main report. FAO Forestry paper 140. FAO, Rome

    Google Scholar 

  • FAO (Food and Agricultural Organization of the United Nations) (2006) Global forest resources assessment 2005. Progress towards sustainable forest management. FAO Forestry paper 147. FAO, Rome

    Google Scholar 

  • Feng X, Simpson AJ, Wilson KP, Williams DD, Simpson MJ (2008) Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat Geosci 1:836–839

    Article  CAS  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Intergovernmental panel on climate change (ed) Climate Change 2007: the physical science basis, Chapter 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Gergis JL, Fowler AM (2009) A history of ENSO events since A.D. 1525: implications for future climate change. Clim Change 92:343–387

    Article  Google Scholar 

  • Guan D, Peters GP, Weber CL, Hubacek K (2009) Journey to world top emitter: an analysis of the driving forces of China’s recent CO2 emissions surge. Geophys Res Lett 36:L04709. doi:10.1029/2008GL036540

    Article  Google Scholar 

  • Hansen J (2005) A slippery slope: how much global warming constitutes ‘dangerous anthropogenic interference’? Clim Change 68:269–279

    Article  Google Scholar 

  • Heimann M (2009) Searching out the sinks. Nat Geosci 2:3–4

    Article  CAS  Google Scholar 

  • Helms JA (ed) (1998) The dictionary of forestry. Society of American Forestry, Bethesda, MD

    Google Scholar 

  • Holmen K (2000) The global carbon cycle. In: Jacobsen MC, Charlston RJ, Rohde H, Orians GH (eds) Earth system science. Academic, Amsterdam, pp 282–321

    Google Scholar 

  • Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347

    Article  CAS  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jarvis PG, Ibrom A, Linder S (2005) ‘Carbon forestry’: managing forests to conserve carbon. In: Griffiths H, Jarvis PG (eds) The carbon balance of forest biomes. Taylor & Francis, Oxon, UK, pp 331–349

    Google Scholar 

  • Kimble JM, Heath LS, Birdsey R, Lal R (eds) (2003) The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kindermann GE, McCallum I, Fritz S, Obersteiner M (2008) A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fennica 42:387–396

    Google Scholar 

  • Kintisch E (2009) Projections of climate change go from bad to worse, scientists report. Science 323:1546–1547

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic, San Diego, CA

    Google Scholar 

  • Kriegler E, Hall JW, Held H, Dawson R, Schellnhuber HJ (2009) Imprecise probability assessment of tipping points in the climate system. Proc Natl Acad Sci USA 106:5041–5046

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  • Laganière J, Angers DA, Paré D (2009) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol doi: 10.1111/j.1365-2486.2009.01930.x

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2008) Carbon sequestration. Phil Trans R Soc B 363:815–830

    Article  CAS  PubMed  Google Scholar 

  • Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35:L18701. doi:10.1029/2008GL034864

    Article  Google Scholar 

  • Leigh Mascarelli A (2009) What we’ve learned in 2008. Nat Rep Clim Change 3:4–6

    Article  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping element’s in the Earth’s climate system. Proc Natl Acad Sci USA 105:1786–1793

    Article  CAS  PubMed  Google Scholar 

  • Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR, Ojo LO, Phillips OL, Reitsma JM, White L, Comiskey JA, M-N DK, Ewango CEN, Feldpausch TR, Hamilton AC, Gloor M, Hart T, Hladik A, Lloyd J, Lovett JC, Makana J-R, Malhi Y, Mbago FM, Ndangalasi HJ, Peacock J, S-H PK, Sheil D, Sunderland T, Swaine MD, Taplin J, Taylor D, Thomas SC, Votere R, Wöll H (2009) Increasing carbon storage in intact African tropical forests. Nature 457:1003–1007

    Article  CAS  PubMed  Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspects of ecology. Ecology 23:399–418

    Article  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10

    Article  CAS  Google Scholar 

  • Lowe JA, Huntingford C, Raper SCB, Jones CD, Liddicoat SK, Gohar LK (2009) How difficult is it to recover from dangerous levels of global warming? Environ Res Lett 4, doi:10.1088/1748-9326/4/1/014012

    Google Scholar 

  • Lukac M, Lagomarsino A, Moscatelli MC, De Angelis P, Cotrufo MF, Godbold DL (2009) Forest soil carbon cycle under elevated CO2 – a case of increased throughput? Forestry 82:75–86

    Article  Google Scholar 

  • Lund HG (1999) A ‘forest’ by any other name. Environ Sci Policy 2:125–133

    Article  Google Scholar 

  • Luyssaert S, Schulze E-D, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215

    Article  CAS  PubMed  Google Scholar 

  • Mann ME (2009) Defining dangerous anthropogenic interference. Proc Natl Acad Sci USA 106:4065–4066

    Article  CAS  PubMed  Google Scholar 

  • Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257

    Article  CAS  PubMed  Google Scholar 

  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schäffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–110

    Article  CAS  Google Scholar 

  • Martin RM (2008) Deforestation, land-use change and REDD. Unasylva 230:3–11

    Google Scholar 

  • Mayle FE, Burbridge R, Killeen TJ (2000) Millenial-scale dynamics of southern Amazonian rainforests. Science 290:2291–2294

    Article  CAS  PubMed  Google Scholar 

  • Mollicone D, Freibauer A, Schulze E-D, Braatz S, Grassi G (2007) Elements for the expected mechanisms on ‘reduced emissions from deforestation and degradation, REDD’ under UNFCCC. Environ Res Lett 2, doi:10.1088/1748-9326/2/4/045024

    Google Scholar 

  • Nabuurs GJ, Masera O, Andrasko K, Benitez-Ponce P, Boer R, Dutschke M, Elsiddig E, Ford-Robertson J, Frumhoff P, Karjalainen T, Krankina O, Kurz WA, Matsumoto M, Oyhantcabal W, Ravindranath NH, Sanz Sanchez MJ, Zhang X (2007) Forestry. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate Change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 541–584

    Google Scholar 

  • Nieder R, Benbi DK, Isermann K (2003) Soil organic matter dynamics. In: Benbi DK, Nieder R (eds) Handbook of processes and modeling in the soil-plant system. Haworth, New York, pp 345–408

    Google Scholar 

  • Odum EP (1967) The strategy of ecosystem development. Science 164:262–270

    Article  Google Scholar 

  • Ovington JD (1962) Quantitative ecology and the woodland ecosystem concept. Adv Ecol Res 1:103–192

    Article  Google Scholar 

  • Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  CAS  PubMed  Google Scholar 

  • Parr JF, Sullivan LA (2005) Soil carbon sequestration in phytoliths. Soil Biol Biochem 37:117–124

    Article  CAS  Google Scholar 

  • Perry DA, Oren R, Hart SC (2008) Forest ecosystems. The John Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Prescott C (2008) Heat-proof carbon compound. Nat Geosci 1:815–816

    Article  CAS  Google Scholar 

  • Purves D, Pacala S (2008) Predictive models of forest dynamics. Science 320:1452–1453

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan V, Feng Y (2008) On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proc Natl Acad Sci USA 105:14245–14250

    Article  CAS  PubMed  Google Scholar 

  • Raupach MR, Canadell JG, Le Quéré C (2008) Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction. Biogeosciences 5:1601–1613

    Article  CAS  Google Scholar 

  • Reichstein M (2007) Impacts of climate change on forest soil carbon: principles, factors, models, uncertainties. In: Freer-Smith PH, Broadmeadow MSJ, Lynch JM (eds) Forestry and climate change. CAB International, Wallingford, UK, pp 127–135

    Google Scholar 

  • Rigby M, Prinn RG, Fraser PJ, Simmonds PG, Langenfelds RL, Huang J, Cunnold DM, Steele LP, Krummel PB, Weiss RF, O’Doherty S, Salameh PK, Wang HJ, Harth CM, Mühle J, Porter LW (2008) Renewed growth of atmospheric methane. Geophys Res Lett 35:L22805. doi:10.1029/2008GL036037

    Article  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–358

    Google Scholar 

  • Roston E (2008) The carbon age: how life’s core element has become civilization’s greatest threat. Walker & Co, New York

    Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse area began thousands of years ago. Clim Change 61:261–293

    Article  CAS  Google Scholar 

  • Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–234

    Article  CAS  Google Scholar 

  • Schlesinger WH (2006) Inorganic carbon and the global C cycle. In: Lal R (ed) Encyclopedia of soil science. Taylor & Francis, London, pp 879–881

    Google Scholar 

  • Schröter D, Cramer W, Leemans R, Colin Prentice I, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Google Scholar 

  • Schulze E-D, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin

    Google Scholar 

  • Seth MK (2004) Trees and their economic importance. Bot Rev 69:321–376

    Article  Google Scholar 

  • Shine KP, Sturges WT (2007) CO2 is not the only gas. Science 315:1804–1805

    Article  CAS  PubMed  Google Scholar 

  • Smernik R, Skjemstad J (2009) Mechanisms of organic matter stabilization and destabilization in soils and sediments: conference introduction. Biogeochemistry 92:3–8

    Article  Google Scholar 

  • Smith JB, Schneider SH, Oppenheimer M, Yohe GW, Hare W, Mastrandrea MD, Patwardhan A, Burton I, Corfee-Morlot J, Magadza CHD, Füssel H-M, Barrie Pittock A, Rahman A, Suarez A, van Ypserle J-P (2009) Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”. Proc Natl Acad Sci USA 106:4133–4137

    Article  CAS  PubMed  Google Scholar 

  • Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA 105:14239–14240

    Google Scholar 

  • Steffen W, Crutzen PJ, McNeill JR (2007) The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36:614–621

    Article  CAS  PubMed  Google Scholar 

  • Tans P (2009) Trends in atmospheric carbon dioxide – global. http://www.esrl.noaa.gov/gmd/ccgg/trends/Accessed August 25 , 2009

  • Tansley AG (1935) The use and abuse of vegetational concepts and terms. Ecology 16:284–307

    Article  Google Scholar 

  • Trumbore SE, Czimczik CI (2008) An uncertain future for soil carbon. Science 321:1455–1456

    Article  CAS  PubMed  Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ, Schulze E-D, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Loustau D, Guðmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865

    Article  CAS  PubMed  Google Scholar 

  • Valladares F (2008) A mechanistic view of the capacity of forests to cope with climate change. In: Bravo F, LeMay V, Jandl G, von Gadow K (eds) Managing forest ecosystems: the challenge of climate change. Springer, New York, pp 15–40

    Google Scholar 

  • Vaughan NE, Lenton TM, Sheperd JG (2009) Climate change mitigation: trade-offs between delay and strength of action required. Clim Change 96:29–43

    Google Scholar 

  • Von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207

    Article  Google Scholar 

  • Waring RW, Running SW (2007) Forest ecosystems – analysis at multiple scales. Elsevier Academic, Burlington, MA

    Google Scholar 

  • Willis AJ (1997) The ecosystem: an evolving concept viewed historically. Funct Ecol 11:268–271

    Article  Google Scholar 

  • Zhou T, Luo Y (2008) Spatial patterns of ecosystem carbon residence time and NPP-driven carbon uptake in the conterminous United States. Global Biogeochem Cy 22, GB3032, doi:10.1029/2007GB002939

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lorenz, K., Lal, R. (2010). Introduction. In: Carbon Sequestration in Forest Ecosystems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3266-9_1

Download citation

Publish with us

Policies and ethics