Skip to main content

A Componentwise Splitting Method for Pricing American Options Under the Bates Model

  • Chapter
  • First Online:
Applied and Numerical Partial Differential Equations

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 15))

Abstract

A linear complementarity problem (LCP) is formulated for the price of American options under the Bates model which combines the Heston stochastic volatility model and the Merton jump-diffusion model. A finite difference discretization is described for the partial derivatives and a simple quadrature is used for the integral term due to jumps. A componentwise splitting method is generalized for the Bates model. It is leads to solution of sequence of one-dimensional LCPs which can be solved very efficiently using the Brennan and Schwartz algorithm. The numerical experiments demonstrate the componentwise splitting method to be essentially as accurate as the PSOR method, but order of magnitude faster. Furthermore, pricing under the Bates model is less than twice more expensive computationally than under the Heston model in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Achdou and O. Pironneau. Computational methods for option pricing, volume 30 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA, 2005.

    MATH  Google Scholar 

  2. A. Almendral and C. W. Oosterlee. Numerical valuation of options with jumps in the underlying. Appl. Numer. Math., 53(1):1–18, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Andersen and J. Andreasen. Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res., 4(3):231–262, 2000.

    Article  Google Scholar 

  4. D. S. Bates. Jumps and stochastic volatility: Exchange rate processes implicit Deutsche mark options. Review Financial Stud., 9(1):69–107, 1996.

    Article  Google Scholar 

  5. F. Black and M. Scholes. The pricing of options and corporate liabilities. J. Polit. Econ., 81:637–654, 1973.

    Article  Google Scholar 

  6. M. J. Brennan and E. S. Schwartz. The valuation of American put options. J. Finance, 32:449–462, 1977.

    Article  Google Scholar 

  7. C. Chiarella, B. Kang, G. H. Mayer, and A. Ziogas. The evaluation of American option prices under stochastic volatility and jump-diffusion dynamics using the method of lines. Research Paper 219, Quantitative Finance Research Centre, University of Technology, Sydney, 2008.

    Google Scholar 

  8. N. Clarke and K. Parrott. Multigrid for American option pricing with stochastic volatility. Appl. Math. Finance, 6:177–195, 1999.

    Article  MATH  Google Scholar 

  9. R. Cont and E. Voltchkova. A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM Numer. Anal., 43(4):1596–1626, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  10. Y. d’Halluin, P. A. Forsyth, and K. R. Vetzal. Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal., 25(1):87–112, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Douglas, Jr. and H. H. Rachford, Jr. On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc., 82:421–439, 1956.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Duffie, J. Pan, and K. Singleton. Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68(6):1343–1376, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Feng and V. Linetsky. Pricing options in jump-diffusion models: an extrapolation approach. Oper. Res., 56:304–325, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Glowinski. Numerical methods for nonlinear variational problems. Springer, New York, 1984.

    MATH  Google Scholar 

  15. R. Glowinski. Finite element methods for incompressible viscous flow. In P. G. Ciarlet and J.-L. Lions, editors, Handbook of Numerical Analysis, Vol. IX, pages 3–1176. North-Holland, Amsterdam, 2003.

    Google Scholar 

  16. R. Glowinski and P. Le Tallec. Augmented Lagrangian and operator splitting methods in nonlinear mechanics. SIAM, Philadelphia, PA, 1989.

    MATH  Google Scholar 

  17. R. Glowinski, J.-L. Lions, and R. Trémolières. Analyse numérique des inéquations variationnelles. Tome 1 & 2. Dunod, Paris, 1976.

    Google Scholar 

  18. K. Goto and R. A. van de Geijn. Anatomy of high-performance matrix multiplication. ACM Trans. Math. Software, 34(3):Art. 12, 25 pp., 2008.

    Google Scholar 

  19. S. Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Stud., 6:327–343, 1993.

    Article  Google Scholar 

  20. S. Ikonen and J. Toivanen. Componentwise splitting methods for pricing American options under stochastic volatility. Int. J. Theor. Appl. Finance, 10:331–361, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Ikonen and J. Toivanen. Pricing American options using LU decomposition. Appl. Math. Sci., 1:2529–2551, 2007.

    MATH  MathSciNet  Google Scholar 

  22. S. Ikonen and J. Toivanen. Efficient numerical methods for pricing American options under stochastic volatility. Numer. Methods Partial Differential Equations, 24:104–126, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. G. Kou. A jump-diffusion model for option pricing. Management Sci., 48(8):1086–1101, 2002.

    Article  Google Scholar 

  24. G. I. Marchuk. Splitting and alternating direction methods. In P. G. Ciarlet and J.-L. Lions, editors, Handbook of Numerical Analysis, Vol. I, pages 197–462. North-Holland, Amsterdam, 1990.

    Google Scholar 

  25. A.-M. Matache, C. Schwab, and T. P. Wihler. Fast numerical solution of parabolic integrodifferential equations with applications in finance. SIAM J. Sci. Comput., 27(2):369–393, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Merton. Option pricing when underlying stock returns are discontinuous. J. Financial Econ., 3:125–144, 1976.

    Article  MATH  Google Scholar 

  27. C. W. Oosterlee. On multigrid for linear complementarity problems with application to American-style options. Electron. Trans. Numer. Anal., 15:165–185, 2003.

    MATH  MathSciNet  Google Scholar 

  28. D. W. Peaceman and H. H. Rachford, Jr. The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math., 3:28–41, 1955.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Rannacher. Finite element solution of diffusion problems with irregular data. Numer. Math., 43:309–327, 1982.

    Article  MathSciNet  Google Scholar 

  30. G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5:506–517, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  31. D. Tavella and C. Randall. Pricing financial instruments: The finite difference method. John Wiley & Sons, Chichester, 2000.

    Google Scholar 

  32. J. Toivanen. Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM J. Sci. Comput., 30:1949–1970, 2008.

    Article  MathSciNet  Google Scholar 

  33. N. N. Yanenko. The method of fractional steps. The solution of problems of mathematical physics in several variables. Springer, New York, 1971.

    Google Scholar 

  34. D. M. Young. Iterative solution of large linear systems. Academic Press, New York, 1971.

    MATH  Google Scholar 

  35. R. Zvan, P. A. Forsyth, and K. R. Vetzal. Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math., 91(2):199–218, 1998.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Toivanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Toivanen, J. (2010). A Componentwise Splitting Method for Pricing American Options Under the Bates Model. In: Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Périaux, J., Pironneau, O. (eds) Applied and Numerical Partial Differential Equations. Computational Methods in Applied Sciences, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3239-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3239-3_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3238-6

  • Online ISBN: 978-90-481-3239-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics