Skip to main content

Modeling the Effects of Climate Change on the Supply of Phosphate-Phosphorus

  • Chapter
  • First Online:
The Impact of Climate Change on European Lakes

Abstract

The transfer of phosphorus from terrestrial to aquatic ecosystems is a key route through which climate can influence aquatic ecosystems. A number of climatic factors interact in complex ways to regulate the transfer of phosphorus and modulate its ecological effects on downstream lakes and reservoirs. Processes influencing both the amount and timing of phosphorus export from terrestrial watersheds must be quantified before we can assess the direct and indirect effects of the weather on the supply and recycling of phosphorus. Simulation of the export of phosphorus from the terrestrial environment is complicated by the fact that it is difficult to describe seasonal and inter-annual variations by existing process-based and empirical models. These variations are also strongly influenced by the history of the weather and by the frequency of extreme weather events. For example, the effects of storm runoff on the export of phosphorus can be very sensitive to levels of soil saturation and soil moisture, which are in turn influenced by the past history of precipitation and evapotranspiration. Inclusion of effects such as these is impossible using simple empirical models and difficult using process based models when model parameterization changes in response to antecedent conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andréasson, J., S. Bergström, B. Carlsson, L. P. Graham, and G. Lindström. (2004) Hydrological change – climate change impact simulations for Sweden. Ambio 33, 228–234.

    Google Scholar 

  • Arheimer, B., J. Andréasson, S. Fogelberg, H. Johnsson, C. B. Pers, and K. Persson. (2005) Climate change impact on water quality: model results from Southern Sweden. Ambio 34, 559–566.

    Google Scholar 

  • Arheimer, B., and R. Lidén. (2000) Nitrogen and phosphorus concentrations for agricultural catchments; influence of spatial and temporal variables. Journal of Hydrology 227, 140–159.

    Article  CAS  Google Scholar 

  • Arnell, N. W. (2003) Relative effects of multi-decadal climatic variability and changes in the mean and variability of climate due to global warming: future streamflows in Britain. Journal of Hydrology 270, 3–4.

    Article  Google Scholar 

  • Arnell, N. W., and N. S. Reynard. (1996) The effects of climate change due to global warming on river flows in Great Britain. Journal of Hydrology 183, 3–4.

    Article  Google Scholar 

  • Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams. (1998) Large area hydrological modelling and assessment Part I: Model development. Journal American Water Works Association 34, 73–89.

    Article  CAS  Google Scholar 

  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier. (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309.

    Article  CAS  Google Scholar 

  • Bergström, S. (1995) The HBV model. in V. P. Singh, editor. Computer Models of Watershed Hydrology. pp. 443–476, Water Resources Publications, Littleton, Colorado, USA.

    Google Scholar 

  • Bergström, S., B. Carlsson, M. Gardelin, G. Lindström, A. Pettersson, and M. Rummukainen. (2001) Climate change impacts on runoff in Sweden – assessments by global climate models, dynamical downscaling and hydrological modelling. Climate Research 16, 101–112.

    Article  Google Scholar 

  • Bicknell, B. R., J. C. Imhoff, A. S. Donigian, and R. C. Johanson. (1997) Hydrologic simulation program – FORTRAN (HSPF) Users Manual for release 11. EPA-600/R-97/080, United States Environmental Protection Agency, Athens, Georgia, USA.

    Google Scholar 

  • Bilaletdin, A., K. Kallio, T. Frisk, B. Vehviläinen, M. Huttunen, and J. Roos. (1994) A modification of the HBV model for assessing phosphorus transport from a drainage area. Water Science and Technology 30, 179–182.

    CAS  Google Scholar 

  • Blenckner, T., A. Omstedt, and M. Rummukainen. (2002) A Swedish case study of contemporary and possible future consequences of climate change on lake function. Aquatic Sciences 64, 171–184.

    Article  Google Scholar 

  • Bouraoui, F., L. Galbiati, and G. Bidoglio. (2002) Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (UK). Hydrology and Earth System Sciences 6, 197–209.

    Article  Google Scholar 

  • Bouraoui, F., B. Grizzetti, K. Granlund, S. Rekolainen, and G. Bidoglio. (2004) Impact of climate change on the water cycle and nutrient losses in a finnish catchment. Climatic Change 66, 109–126.

    Article  CAS  Google Scholar 

  • Dai, T., R. L. Wetzel, R. L. Tyler, and E. A. Lewis. (2000) BasinSim 1.0: A windows based watershed modeling package. Virginia Inst. of Marine Science, College of Williams and Mary, VA, USA.

    Google Scholar 

  • De Stasio, B. T., Jr., D. K. Hill, J. M. Kleinhans, N. P. Nibbelink, and J. J. Magnuson. (1996) Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton. Limnology and Oceanography 41, 1136–1149.

    Article  Google Scholar 

  • Déqué, M.,D. P. Rowell,D. Lühti,F. Giorgi, J. H. Christensen, B. Rockel,D. Jacob,E. Kjellström, M. de Castro, and B. van den Hurk. (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Climatic Change 81, 53–70.

    Article  Google Scholar 

  • Donigian, A. S. J., and W. C. Huber. (1991) Modeling of nonpoint source water quality in urban and non-urban areas. EPA/600/3-91/039, United States Environmental Protection Agency, Athens, Georgia.

    Google Scholar 

  • Ewen, J., G. Parkin, and E. O’Connell. (2000) SHETRAN: distributed basin flow and transport modelling system. Journal of Hydrological Engineering 5, 250–258.

    Article  Google Scholar 

  • Fang, X., and H. G. Stefan. (1999) Projections of climate change effects on water temperature characteristics of small lakes in the contiguous US. Climatic Change 42, 377–412.

    Article  Google Scholar 

  • Graham, L. P. (2004) Climate change effects on river flow to the Baltic Sea. Ambio 33, 235–241.

    Google Scholar 

  • Haith, D. A., and L. J. Tubbs. (1981) Watershed loading functions for nonpoint sources. Journal of the Environmental Engineering Division ASCE 107, 121–137.

    Google Scholar 

  • Haith, D. A., and L. L. Shoemaker. (1987) Generalized watershed loading functions for stream flow nutrients. Water Resources Bulletin 23, 471–478.

    Google Scholar 

  • Haith, D. A., R. Mandel, and R. S. Wu. (1992) GWLF: Generalized watershed loading functions user’s manual, Vers. 2.0. (Computer program manual). Cornell University, Ithaca, NewYork.

    Google Scholar 

  • Kaste, Ø., K. Rankinen, and A. Lepistö. (2004) Modelling impacts of climate and deposition changes on nitrogen fluxes in northern catchments of Norway and Finland. Hydrology and Earth System Sciences 8, 778–792.

    Article  CAS  Google Scholar 

  • Komatsu, E., T. Fukushima, and H. Harasawa. (2007) A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecological Modelling 209, 2–4.

    Article  Google Scholar 

  • Lee, K. -Y., T. R. Fisher, T. E. Jordan, D. L. Correll, and D. E. Weller. (2000) Modeling the hydrochemistry of the choptank river basin using GWLF and GIS. Biogeochemistry 49, 143–173.

    Article  CAS  Google Scholar 

  • Lettenmaier, D. P., A. W. Wood, R. N. Palmer, E. F. Wood, and E. Z. Stakhiv. (1999) Water resources implications of global warming: a US regional perspective. Climate Change 43, 537–579.

    Article  CAS  Google Scholar 

  • Lidén, R. (2001) Internal HBV-96 variables and phosphorus transport processes. Nordic Hydrology 32, 29–48.

    Google Scholar 

  • Limbrunner, J. F., R. M. Vogel, and S. C. Chapra. (2005) A parsimonious watershed model. V. P. Singh, editor. Computer Models of Watershed Hydrology 2nd Edition. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Lindström, G., B. Johansson, M. Persson, M. Gardelin, and S. Bergström. (1997) Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology 201, 272–288.

    Article  Google Scholar 

  • Magnuson, J. J., D. M. Robertson, B. J. Benson, R. H. Wynne, D. M. Livingstone, T. Arai, R. A. Assel, R. G. Barry, V. Card, E. Kuusisto, N. G. Granin, T. D. Prowse, K. M. Stewart, and V. S. Vuglinski. (2000) Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289, 1743–1746.

    Article  CAS  Google Scholar 

  • Malmaeus, J. M., T. Blenckner, H. Markensten, and I. Persson. (2006) Lake phosphorus dynamics and climate warming: a mechanistic model approach. Ecological Modelling 190, 1–14.

    Article  Google Scholar 

  • Mankin, K. R., J. K. Koelliker, and P. K. Kalita. (1999) Watershed and lake water quality assessment: an integrated modeling approach. Journal of the American Water Resources Association 35, 1069–1080.

    Article  CAS  Google Scholar 

  • Mankin, K. R., S. H. Wang, J. K. Koelliker, D. G. Huggins, and F. Denoyelles. (2003) Watershed-lake water quality modeling: Verification and application. Journal of Soil and Water Conservation 58, 188–197.

    Google Scholar 

  • Markensten, H., K. Moore, and I. Persson. (2009) Simulated lake phytoplankton composition shifts towards cyanobacteria in a future warmer climate. Ecological Applications (in press).

    Google Scholar 

  • Mörth, C. -M., C. Humborgk, H. Eriksson, A. Danielsson, M. Rodriguez Medina, S. Löfgren, D. P. Swaney, and L. Rahm. (2007) Modeling riverine nutrient transport to the Baltic Sea: a large-scale approach. Ambio 36, 124–133.

    Article  Google Scholar 

  • Nash, J. E., and V. Sutcliffe. (1970) River flow forecasting through conceptual models, I. A discussion of principles. Journal of Hydrology 10, 282–290.

    Google Scholar 

  • Nijssen, B., G. M. O’Donnell, A. F. Hamlet, and D. P. Lettenmaier. (2001) Hydrologic sensitivity of global rivers to climate change. Climatic Change 50, 1–2.

    Article  Google Scholar 

  • Owens, E. M, S. W. Effler, S. M. Doerr, R. K. Gelda, E. M. Schneiderman, D. G. Lounsbury, and C. L. Stepczuk. (1998) A strategy for reservoir model forecasting based on historic meteorological conditions. Lake and Reservoir Management 14, 2–3.

    Google Scholar 

  • Rango, A. (1995) Effects of climate change on water supplies in mountainous snowmelt regions. World Resource Review 7, 315–325.

    Google Scholar 

  • Reckhow, K. H. (1979) The use of a simple model and uncertainty analysis in lake management. Water Resources Bulletin 15, 601–611.

    Google Scholar 

  • Reckhow, K. H., and S. C. Chapra. (1983) Engineering approaches for lake management, Volume I: Data Analysis and Empirical Modeling. Butterworths, Boston.

    Google Scholar 

  • Rummukainen, M., S. Bergström, G. Persson, J. Rodhe, and M. Tjernström. (2004) The Swedish Regional Climate Modelling Programme, SWECLIM: a review. Ambio 33, 176–182.

    Google Scholar 

  • Schneiderman, E. M., D. C. Pierson, D. G. Lounsbury, and M. S. Zion. (2002) Modelling the hydrochemistry of the Cannonsville watershed with generalized watershed loading functions (GWLF). Journal of the American Water Resources Association 38, 1323–1347.

    Article  CAS  Google Scholar 

  • Schoumans, O. F., and M. Silgram. (2003) Review and literature evaluation of nutrient quantification tools. EUROHARP report 1-2003. SNO 4739-2003, NIVA, Oslo, Norway.

    Google Scholar 

  • Summer, R. M., C. V. Alonso, and R. A. Young. (1990) Modeling linked watershed and lake processes for water quality management decisions. Journal of Environmental Quality 19, 421–427.

    Article  CAS  Google Scholar 

  • Ulén, B., G. Johansson, and K. Kyllmar. (2001) Model predictions and long term trends in phosphorus export from arable lands in Sweden. Agricultural Water Management 49, 197–210.

    Article  Google Scholar 

  • Vehviläinen, B., and J. Lohvansuu. (1991) The effects of climate change on discharges and snow cover in Finland. Hydrological Sciences Journal 36, 109–122.

    Article  Google Scholar 

  • Wade, A. J., P. G. Whitehead, and D. Butterfield. (2002) The Integrated Catchments model of Phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: model structure and equations. Hydrology and Earth Systems Sciences 6, 583–606.

    Article  Google Scholar 

  • Weyhenmeyer, G. A. (2001) Warmer winters: are planktonic algal populations in Sweden’s largest lakes affected? Ambio 30, 565–571.

    CAS  Google Scholar 

  • Whitehead, P. G., A. L. Heathwaite, N. J. Flynn, A. J. Wade, and P. F. Quinn. (2007) Evaluating the risk of non-point source pollution from biosolids: integrated modellig of nutrient losses at field and catchment scales. Hydrology and Earth Systems Sciences 11, 601–613.

    Article  CAS  Google Scholar 

  • Whitehead, P., A. Wade, and D. Butterfield. (2009) Potential impacts of climate change on water quality in six UK rivers. Hydrological Research 40(2-3), 113–122.

    Google Scholar 

  • Wulff, F., O. P. Savchuk, A. Sokolov, C. Humborg, and C. -M. Mörth. (2007) Management options and effects on a marine ecosystem: assessing the future of the Baltic. Ambio 36, 243–249.

    Article  CAS  Google Scholar 

  • Yoo, J. C., and P. D’Odorico. (2002) Trends and fluctuations in the dates of ice break-up of lakes and rivers in Northern Europe: the effect of the North Atlantic Oscillation. Journal of Hydrology 268, 1–4.

    Article  Google Scholar 

  • Young, R. A., C. A. Onstad, D. D. Bosch, and W. P. Anderson. (1986) Agricultural Nonpoint Source Pollution Model: Watershed Analysis Tool. Agricultural Research Service, United States Department of Agriculture, Morris, MN, USA.

    Google Scholar 

Download references

Acknowledgements

We thank Glen George for carefully editing the manuscript for this chapter, and Pam Naden for reviewing the chapter and providing many useful comments. Mark Zion reviewed the chapter and also helped create the figures. We also thank all of the members of the CLIME project who contributed to a stimulating environment for examining an important problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don Pierson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pierson, D. et al. (2010). Modeling the Effects of Climate Change on the Supply of Phosphate-Phosphorus. In: George, G. (eds) The Impact of Climate Change on European Lakes. Aquatic Ecology Series, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2945-4_9

Download citation

Publish with us

Policies and ethics