Skip to main content

Autocatalytic Processes and the Role of Essential Elements in Plant Growth

  • Chapter
  • First Online:

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 45))

Abstract

There is no direct relationship between essentiality patterns of chemical elements and analytical data for biological materials: while any organism selects some (dozens of) chemical elements for running its biochemical functions, several of these may be present, both required and tolerable at very low concentration levels only (V, Se) though essential whereas there are substantial amounts of non-essential metal ions in the same organism (Al, Rb, Sr, Ti, etc.). There are also differences with respect to biochemical effects. In additions, elements do interact during uptake: regardless whether an element is essential by itself, it may influence the uptake of another – regardless whether essential or non-essential – one, e.g. by competing for the same carriers. There also are changes of effects (Fig. 1.2) which can be detected by changes of plant growth rates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Apparently this difference of some 2–3 units is a simple charge effect, corresponding to the “electrostatic part” of M-L-binding, cp. the difference between c values of H, Tl, R3Sn monocations vs. similar (isoelectronic, similar radii) dications (Be2+, Pb2+, R2Sn2+).

  2. 2.

    Conversely, either chelating or linkage-isomeric behavior in a ligand with very different EL(L) of the possible donor sites points to x1d ≈ 0, e.g. with acrylate ion complexes (either behaving as an olefin p-ligand [side-on-bound] or as a carboxylate) of Pt(II).

  3. 3.

    Note that there is a difference in effective EL(L) of different ages in spruce needles.

  4. 4.

    For example, from Lever`s formalism it can be directly calculated that Ru(II/III) redox potentials for derivatives formed by neutral ligand attack on the chlorobridges in ([Ru(CO)3Cl2]2) are similar to that of molecular fluorine (!).

  5. 5.

    Proton–proton fusion chain reactions (Bethe and Critchfield 1938): the first long-lived intermediate of nuclear fusion in lowmass stars, 3He, adds to one 4He to yield (radioactive) 7Be which eventually produces two 4He by capture of another proton and radioactive decay of 8B (pp-III chain) or vice versa along the 7Be decay product 7Li + p (pp-II).

  6. 6.

    “Strategy” here corresponds to some “evolutionary stable strategy” (ESS) as derived from biological applications of game theory (Szathmary, Maynard Smith).

  7. 7.

    As a rule, there are neither covalent metal–metal bonds nor oganometal species in biology, the only “dimer” kinds directly linked to each other covalently being formed by C–C- or S–S- bonds. Usually, two identical metals are rather bridged by hydroxo-, chloro- or carboxylato ligands (e.g., in haemerythrin), with other μ-ligands like hydride or O2, N2 to be considered as intermediates of catalytic cycles or transport tasks. As often metal ions liable to condensation (valve metals, V, Fe) are located close to the “surface” of some protein structure, formation of such dimers will not be precluded by the matrix. Moreover thioferrate clusters also facilitate linking. The thermodynamic and physicochemical (SNA and beyond) implications of this tendency in biochemistry remain to be fully understood.

  8. 8.

    As this “problem”, which e.g. precludes transfer of Sm3+ and several other REEs into wheat grains almost completely (that is, down to detection limits, Emsley 2001), occurs likewise with all the REEs and other “citratophilic” metals (Al, Ga) in a given plant species, non-fractionation (identical BCF, here thus small, usually BCF < 0.02 for these metals in terrestrial plants) does imply that effects occurring elsewhere during respeciation cancel each other or do not differ either. Thus the determination of an effective electrochemical ligand parameter based on identical BCF among these and other elements remains valid; in addition, multi-element approaches provide rather identical EL(L)eff values for the same plant analyzing REE and transition metal BCF data (cp. Table 2.19).

References

  • Ahrland S, Chatt J, Davies NR (1958) The relative affinities of ligand atoms for acceptor molecules and ions. Quart Rev Chem Soc 12:265–276

    Article  CAS  Google Scholar 

  • Albracht SPJ, van der Zwaan JW, Fontijn RD, Slater EC (1986) On the possible redox states of nickel and the iron-sulphur cluster in hydrogenase from Chromatium vinosum. In: Xavier AV (ed) Frontiers in bioinorganic Chemistry. VCH, Weinheim, pp 11–19

    Google Scholar 

  • Anderson RJ (1924) A contribution to the chemistry of grape pigments. III. Concerning the anthocyans in Seibel grapes. J Biol Chem 61:685–694

    Google Scholar 

  • Arkowitz RA, Abeles RH (1990) Isolation and characterization of a covalent selenocysteine intermediate in the glycine reductase system. J Am Chem Soc 112:870–876

    Article  CAS  Google Scholar 

  • Arnon DI, Stout PR (1939) Molybdenum as an essential element for higher plants. Plant Physiol 14:599–602

    Article  PubMed  CAS  Google Scholar 

  • Balahura RJ, Lewis NA (1976) Linkage isomers in coordination chemistry. Coord Chem Rev 20:109–154

    Article  CAS  Google Scholar 

  • Belloli R, Bolzacchini E, Clerici L, Rindone B, Sesana G, Librando V (2006) Nitrophenols in air and rainwater. Environ Eng Sci 23:405–415

    Article  CAS  Google Scholar 

  • Bethe HA, Critchfield CL (1938) The formation of deuterons by proton combination. Phys Rev 54:298–305

    Google Scholar 

  • Brook A (1987) Algae with a taste for the unusual. New Scientist 115:55–57

    Google Scholar 

  • Brown HC, Okamoto Y (1958) Hammett-type kinetics in hydrolysis of cumyl chlorides: the σ+ parameter. J Am Chem Soc 80:4979–4986

    Article  CAS  Google Scholar 

  • Burmeister JL (1968) Linkage isomerism in metal complexes. Coord Chem Rev 3:225–245

    Article  CAS  Google Scholar 

  • Bursten BE (1982) Ligand additivity: applications to the electrochemistry and photoelectron spectroscopy of d6 octahedral complexes. J Am Chem Soc 104:1299–1304

    Article  CAS  Google Scholar 

  • Castric PA (1977) Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis. J Bacteriol 130:826–831

    PubMed  CAS  Google Scholar 

  • Chatt J, Jeffery Leigh G, Neukomm H, Pickett CJ, Stanley DR (1980) Redox potential-structure relationships in metal complexes. Part 2. The influence of trans-substituents upon the redox properties of certain dinitrogen complexes of molybdenum and tungsten and some carbonyl analogues: inner-sphere versus outer-sphere electron transfer in the alkylation of co-ordinated dinitrogen. J Chem Soc, Dalton Trans 121–127

    Google Scholar 

  • Clarke BL (1975) Theorems on chemical network stability. J Chem Phys 62:773–775

    Article  CAS  Google Scholar 

  • Clarke BL (1980) Stability of complex reaction networks. Adv Chem Phys 43:1–217

    Article  CAS  Google Scholar 

  • Clarke BL (1995) What is stoichiometric network analysis? Web site Alberta University at Edmonton (no longer online)

    Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  PubMed  CAS  Google Scholar 

  • Coe BJ, Glenwright SJ (2000) Trans-effects in octahedral complexes. Coord Chem Rev 203:5–80

    Article  CAS  Google Scholar 

  • Colacio-Rodriguez E, Lopez-Gonzalez JD, Salas-Peregrin JM (1983) 1, 3, 8-trimethylxanthine complexes of Cu(II), Zn(II), Cd(II), and Hg(II). Can J Chem 61:2506–2508

    Article  CAS  Google Scholar 

  • Coleman WF (2003) Pourbaix diagrams and reactions in aqueous solution. www.wellesley.edu/Chemistry/chem120/pour.html

  • Cotton FA, Wilkinson G (1981) Anorganische chemie: eine zusammenfassende Darstellung für Fortgeschrittene. Verlag Chemie, Weinheim/Deerfield Beach/Basel

    Google Scholar 

  • Cowgill UM (1973) Biogeochemistry of the rare-earth elements in aquatic macrophytes from Linsley Pond, North Branford, Connecticut. Geochim Cosmochim Acta 37:2329–2345

    Article  CAS  Google Scholar 

  • Deuber R, Heim T (1991) Yttrium. In: Merian E (ed) Metals and their compounds in the environment. Occurrence, analysis and biological relevance. VCH, Weinheim/New York/Basel/Cambridge, pp 1299–1308

    Google Scholar 

  • Donohue T (1977) Photochemical separation of europium from lanthanide mixtures in aqueous solution. J Chem Phys 67 5402–5404

    Google Scholar 

  • Duffield JR, Taylor DM (1987) A spectroscopic study of the binding of plutonium(IV) and its chemical analogues to transferrin. Inorg Chim Acta 140:365–367

    Article  CAS  Google Scholar 

  • Dulka JJ, Risby TH (1976) Ultratrace metals in some environmental and biological systems. Anal Chem 48(A):640–653

    Google Scholar 

  • Dürre P, Andreesen JR (1989) Die biologische Bedeutung von Selen. Biologie unserer Zeit 16:12–19

    Article  Google Scholar 

  • Eady RR (2003) Current status of structure function relationships of vanadium nitrogenases. Coord Chem Rev 237:23–30

    Article  CAS  Google Scholar 

  • Egami F (1974) Minor elements and evolution. J Mol Evol 4:113–120

    Article  PubMed  CAS  Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Die Naturwissenschaften 58:465–523

    Article  PubMed  CAS  Google Scholar 

  • Eiswirth M, Freund A, Ross J (1991a) Operational procedure toward the classification of chemical oscillators. J Phys Chem 96:1294–1299

    Article  Google Scholar 

  • Emsley J (2001) Nature’s building blocks. An A–Z guide to the elements. Oxford University Press, Oxford

    Google Scholar 

  • Enyedy EA, Pocsi I, Farkas E (2004) Complexation of desferrocoprogen with trivalent Fe, Al, Ga, In, and divalent Fe, Ni, Cu, Zn metal ions: effects of the linking chain structure on the metal binding ability of hydroxamate based siderophores. J Inorg Biochem 98:1957–1966

    Article  PubMed  CAS  Google Scholar 

  • Farago ME (1986) Metal ions and plants. In: Xavier AV (Hrg.) (ed) Frontiers in bioinorganic chemistry. VCH, Weinheim/Deerfield Beach, pp S106–S122

    Google Scholar 

  • Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837

    Article  Google Scholar 

  • Fegley B Jr. (1995) Properties and composition of the terrestrial oceans and of the atmospheres of the earth and other planets. In: Ahrens T (ed) Global Earth physics. A handbook of physical constants. AGU, Washington, DC, pp 320–345

    Google Scholar 

  • Feldmann J (1999) Determination of Ni(CO)4, Fe(CO)5, Mo(CO)6, and W(CO)6 in sewage gas by cryotrapping gas chromatography inductively coupled plasma mass spectrometry. J Environ Monit 1:33–37

    Article  PubMed  CAS  Google Scholar 

  • Feller U (2005) Homepage Botanisches Institut der Universität Bern; www.botany.unibe.ch

  • Fielder SS, Osborne MC, Lever ABP, Pietro WJ (1995) First-principles interpretation of ligand electrochemical EL(L) parameters. Factorization of the σ and π donor and π acceptor capabilities of ligands. J Am Chem Soc 117:6990–6993

    Google Scholar 

  • Figgis BN, Hitchman M (2000) Ligand field theory and its applications. Wiley, New York

    Google Scholar 

  • Fränzle S, Markert B (2000a) Das biologische system der elemente (BSE): eine modelltheoretische betrachtung zur essentialität von chemischen elementen – die anwendungen der stöchiometrischen netzwerkanalyse auf das biologische system der elemente. Zeitschrift für Umweltchemie und Ökotoxikologie 12:97–103

    Article  Google Scholar 

  • Fränzle S, Markert B (2002a) The biological system of the elements (BSE) – a brief introduction into historical and applied aspects with special reference on “ecotoxicological identity cards” for different element species (f.e., As and Sn). Environ Pollut 120:27–45

    Article  PubMed  Google Scholar 

  • Fränzle S, Markert B (2006a) What does bioaccumulation really tell us? – analytical data in their natural environment. Chemia i Inzyniernia Ecologiczna 13:7–23

    Google Scholar 

  • Fränzle S, Markert B, Wünschmann S (2005) Technische umweltchemie – innovative verfahren der reinigung verschiedener umweltkompartimente. Ecomed, Landsberg/Lech

    Google Scholar 

  • Frausto Da Silva JJR, Williams RJP (2001) The biological chemistry of the elements. The inorganic chemistry of life. Oxford University Press, Oxford

    Google Scholar 

  • Furia T (1972) First stability constants of various metal chelates. CRC handbook of food additives. CRC Press, Baton Rouge

    Google Scholar 

  • Garten CT (1976) Correlations between concentrations of elements in plants. Nature 261:686–688

    Google Scholar 

  • Gleadow RM, Woodrow IE (2000) Temporal and spatial variation in cyanogenic glycosides in Eucalyptus gladocalyx. Tree Physiol 20:591–98

    PubMed  CAS  Google Scholar 

  • Gleadow RM, Vecchies AC, Woodrow IE (2003) Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific β-glucosidases. Phytochemistry 63:699–704

    Article  PubMed  CAS  Google Scholar 

  • Gleixner G, Czimczik CJ, Kramer C, Lühker B, Schmidt MWI (2001) Plant compounds and their turnover and stabilization as soil organic matter. In: Schulze ED et al. (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, CA, pp 201–215

    Google Scholar 

  • Golub AM, Köhler H (1979) Chemie der Pseudohalogenide. Deutscher Verlag der Wissenschaften, Berlin (East)

    Google Scholar 

  • Grossoehme NE, Akilesh S, Guerinot ML, Wilcox DE (2005) Metal ion binding to the unique histidine-rich sequence, Pro(HisGly)4Pro, of the iron-regulated transport protein IRT-1 from Arabidopsis thaliana. Proceedings 12th ICBIC-Konferenz, http://www.umich.edu/∼icbic/Abstracts/371709-1.pdf

  • Guo Z, Sadler P (1999) Medicinal inorganic chemistry. Adv Inorg Chem 49:183–306

    Article  Google Scholar 

  • Guo X, Zhou Q, Lu T, Fang M, Huang X (2007) Distribution and translocation of 141Ce(III) in horseradish. Ann Bot 244:1–7

    Google Scholar 

  • Habermehl G, Hammann PE, Krebs HC (2003) Naturstoffchemie. Eine Einführung, 2nd fully revised edition. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Hammett LP (1973) Physikalische organische chemie. Reaktionsgeschwindigkeiten, Gleichgewichte, Mechanismen. Verlag Chemie, Weinheim

    Google Scholar 

  • Heilbronner E, Bock H (1978) Das HMO-Modell und seine Anwendung., Grundlagen und Handhabung. Verlag Chemie, Weinheim/New York

    Google Scholar 

  • Hennig H, Ritter K (1995) Photochemische untersuchungen von vitamin b12-modellverbindungen mit azid bzw. Thiolat als axialliganden – precursorverbindungen für koordinativ ungesättigte cobalt(ii)-komplexe. J für Praktische Chemie 337:125–132

    Article  CAS  Google Scholar 

  • Hersman LE (2000) The role of siderophores in iron oxide dissolution. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DC

    Google Scholar 

  • Höhne WE (1980) Metallionen in Struktur und Funktion von Metallenzymen. Zeitschrift für Chemie 20:1–11

    Article  Google Scholar 

  • Horvath O, Stevenson KL (1992) Charge transfer photochemistry of coordination compounds. Weinheim, VCH

    Google Scholar 

  • Ikawa M, Snell EE (1954) Metal ion catalysis in oxidative transaminations by pyridoxal phosphate. J Amer Chem Soc 76: 4900–4905

    Google Scholar 

  • Ioannidis N, Schansker G, Barynin VV, Petrouleas V (2000) Interaction of nitric oxide with the oxygen evolving complex of photosystem II and manganese catalase: a comparative study. J Biol Inorg Chem 5:354–363

    Article  PubMed  CAS  Google Scholar 

  • Irgolic KJ (1986) Arsenic in the environment. In: Xavier AV (ed) Frontiers in bioinorganic chemistry. VCH, Weinheim and Deerfield Beach, pp 399–408

    Google Scholar 

  • Irving H, Rossotti H (1956) Some relationships among the stabilities of metal complexes. Acta Chim Scand 10:72–93

    Article  CAS  Google Scholar 

  • Irving H, Williams RJP (1953) The stability series for complexes of divalent ions. J Chem Soc 1953:3192–3205

    Google Scholar 

  • Izatt RM, Christensen JJ, Rytting JH (1971) Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides and nucleotides. Chem Rev 71:439–481

    Article  PubMed  CAS  Google Scholar 

  • Johnson MK, Rees DC, Adams MWW (1996) Tungstoenzymes. Chem Rev 96:2817–2839

    Article  PubMed  CAS  Google Scholar 

  • Jordan RB (1994) Mechanismen anorganischer und metallorganischer Reaktionen. Teubner, Stuttgart

    Google Scholar 

  • Kabata-Pendias A (2002) A current issue of biogeochemistry of trace elements. Heavy metals, radionuclides and elements – biophytes in the environment. Semipalatinsk, 34–41

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kai Y, Matsumura H, Izui K (2003) Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Arch Biochem Biophys 414:170–179

    Article  PubMed  CAS  Google Scholar 

  • Kaim W, Schwederski B (1993) Bioanorganische Chemie. Teubner, Stuttgart

    Google Scholar 

  • Kaim W, Wanner M, Knödler A, Zalis S (2002) Copper complexes with non-innocent ligands: probing CuII/catecholato-CuI/o-semiquinolato isomer equilibria with EPR spectroscopy. Inorg Chim Acta 337:163–172

    Article  CAS  Google Scholar 

  • Karnovsky MJ (1994) Cytochemistry and reactive oxygen species: a retrospective. Histochem Cell Biol 102:15–27

    Article  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934–936

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1979) The neutral theory of molecular evolution. Scientific American 241: 94–104

    Google Scholar 

  • Kimura E (2001) Model studies for molecular recognition of carbonic anhydrase and carboxypeptidase. Acc Chem Res 34:171–179

    Google Scholar 

  • Kiss T, Sovago I, Gergely A (1991) Critical survey of stability constants of complexes of glycine. IUPAC Commission on Equilibrium Data. Pure Appl Chem 63:597–638

    Google Scholar 

  • Kitao M, Lei TT, Koike L (1997) Comparison of photosynthetic responses to manganese toxicity of deciduous broad-leaved trees in northern Japan. Environ Pollut 97:113–118

    Article  PubMed  CAS  Google Scholar 

  • Kollaske R (2009) Elektrochemisch-analytische Ligandeniden­tifikation und Entwicklung eines Untersuchungsverfahrens für biogene Einträge Metallionen sequestrierender Organika in Bodenlösungen und verwandten Medien. Diploma thesis, Zittau-Görlitz University of Applied Sciences, Zittau (Germany)

    Google Scholar 

  • Kopf-Maier P (1994) Complexes of metals other than platinum as anti-tumour agents. Eur J Clin Pharmacol 47:1–16

    Article  PubMed  CAS  Google Scholar 

  • Krause HW (1959) Nichtenzymatische oxydative Desaminierung des Alanins durch Pyridoxalphosphat. Chemiische Ber 92: 1914–1917

    Google Scholar 

  • Kroll H (1952) The participation of heavy metal ions in the hydrolysis of amino acid esters. J Am Chem Soc 74:2036–2039

    Article  CAS  Google Scholar 

  • Kruck T, Lang A (1997) Über Metall-Trifluorphosphin-Komplexe. XV. Tris-(trifluorphosphin-nitrosyleisenhydrid. Chemische Berichte 99:3794–3799

    Article  Google Scholar 

  • Kwok SC, Atkinson R (1995) Estimation of hydroxyl radical reaction rate constnats for gas-phase organic compounds using a structure-reactivity relationship: An update. Atmospheric Environment 29 1685–1695

    Google Scholar 

  • Kyriakopoulos A, Graebert A, Bertelsmann H, Alber D, Behne D (2004) Antioxidative defence system and selenoproteins. In: Anke M (ed) Macro and trace elements. Proceedings 22nd Workshop at Jena, pp 1065–1072

    Google Scholar 

  • Ladiges W (1984) Der Fisch in der Landschaft. Kernen, Essen

    Google Scholar 

  • Le Son H, Suwannachot Y, Bujdak J, Rode BM (1998) Salt-induced peptide formation from amino acids in the presence of clay and related catalysts. Inorg Chim Acta 272:89–94

    Article  CAS  Google Scholar 

  • Leinfelder W, Zehelein E, Böck A, Mandrand-Berthelot MA (1987) Gene for a novel RNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331:723–725

    Article  Google Scholar 

  • Leonard A (2002) Arsenic. In: Merian E (ed) Metals and their compounds in the environment. Occurrence, analysis and biological relevance. VCH, Weinheim/New York

    Google Scholar 

  • Lepp NW, Harrison SCS, Morrell BG (1987) A role for Amanita muscaria L. in the circulation of cadmium and vanadium in a non-polluted woodland. Environ Geochem Health 9:61–64

    Article  CAS  Google Scholar 

  • Lever ABP (1990) Electrochemical parametrization of metal complex redox potentials, using the ruthenium(III)/ruthenium(II) couple to generate a ligand electrochemical series. Inorg Chem 29:1271–1285

    Article  CAS  Google Scholar 

  • Levit GS (2001) Biogeochemistry – biosphere – noosphere. The growth of the theoretical system of Vladimir Ivanovich Vernadsky. Verlag für Wissenschaft und Bildung, Berlin

    Google Scholar 

  • Lipscomb W (1982) Acceleration of reactions by enzymes. Acc Chem Res 15:232–238

    Article  CAS  Google Scholar 

  • Loladze I, Kuang Y, Elser JJ (2000) Stoichiometry in producer-grazer systems. Bull Math Biol 62:1137–1162

    Article  PubMed  CAS  Google Scholar 

  • Lotka AJ (1910) Zur Theorie der periodischen Reaktionen. Z Phys Chem 72:508–514

    Google Scholar 

  • Lund H (1957) Electroorganic preparations. IV. Oxidation of aromatic hydrocarbons. Acta Chim Scand 11:1323–1130

    Google Scholar 

  • Lwoff A, Ionesco H (1947) Replacement of potassium by rubidium and cesium in the bacterial production of pyruvic acid from malic acid. Comptes Rendues Academie Sciences 225:77–79

    CAS  Google Scholar 

  • Majumder K, Bhattacharya S (1999) Amino acid complexes of ruthenium: synthesis, characterization and cyclic voltammetric studies. Polyhedron 18:3669–3673

    Article  CAS  Google Scholar 

  • Makosza M (2000) Phase transfer catalysis: a greener methodology for organic synthesis. Pure Appl Chem 72:1439–1445

    Article  Google Scholar 

  • Markert B (1994a) The biological system of the elements (BSE) for terrestrial plants (glycophytes). Sci Total Environ 155:221–228

    Article  CAS  Google Scholar 

  • Markert B (1996) Instrumental element and multi-element analysis of plant samples – methods and applications. Wiley, Chichester/New York

    Google Scholar 

  • Markert B (1998) Distribution and biogeochemistry of inorganic chemicals in the environment. In: Schüürmann G, Markert B (Hrsg.) (eds) Ecotoxicology – ecological fundamentals, chemical exposure, and biological effects. Wiley und Spektrum Akademischer Verlag, New York, Chichester, Heidelberg etc., pp 165–222

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Harcourt Bruce Jovanovich/Academic, London/Orlando

    Google Scholar 

  • Martell AE, Motekaitis RJ, Smith RM (1985) Speciation of metal complexes and and methods of predicting thermodynamics of metal-ligand reactions. Environmental inorganic chemistry. VCH, Weinheim/New York

    Google Scholar 

  • Martin MH, Bullock RJ (1994) The impact and fate of heavy metals in an oak woodland ecosystem. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, Chichester/New York, pp 327–367

    Google Scholar 

  • Massoud SS, Sigel H (1988) Metal coordinating properties of pyrimidine-nucleoside-5-monophosphates (CMP, UMP, TMP) and of simple phosphate monoesters, including D-ribose 5´-monophosphate. Establishment of relations between complex stability and phosphate basicity. Inorg Chem 27:1447–1453

    Google Scholar 

  • McLendon G, Martell AE (1976) Inorganic oxygen carriers as models for biological systems. Coord Chem Rev 19:1–8

    Article  CAS  Google Scholar 

  • McLendon G, Harris W, Martell AE (1976) Dioxygen compl­exation by cobalt amino acid and peptide complexes. I. Stoichiometry and equilibria. J Am Chem Soc 98: 8379–8386

    Google Scholar 

  • Mengel K, Zickermann V (2007) Einführung in die Biochemie, 5th edn. Lehmann, Berlin

    Google Scholar 

  • Merbach AE (1982) Solvent exchange rates in metal complexes. Pure Appl Chem 54:1479–1498

    Article  CAS  Google Scholar 

  • Metzler DE, Ikawa M, Snell EE (1954) Metal ion catalysis in oxidative transaminations by pyridoxal phosphate. J. Amer Chem Soc 76: 645–649

    Google Scholar 

  • Misono M, Ochiai EI, Saito Y, Yoneda Y (1967) A new dual parameter scale for the strength of Lewis acids and bases with the evaluation of their softness. J Inorg Nucl Chem 29:2685–2691

    Article  CAS  Google Scholar 

  • Mizerski W (1997) Tablice chemiczne. Wydawnictwo Adamantan, Warsaw

    Google Scholar 

  • Moeller T, Martin DF, Thompson LC, Ferrus R, Feistel GR, Randall WJ (1965) The coordination chemistry of yttrium and the rare earth metal ions. Chem Rev 65:1–50

    Article  CAS  Google Scholar 

  • Müller-Herold U (1984) A simple model for the evolutionary emergence of novel properties. Orig Life 14:523–529

    Article  PubMed  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Nawi MA, Reichel TL (1987) The chemical nature of amavadin. Inorg Chim Acta 136:33–35

    Article  CAS  Google Scholar 

  • Nieboer E, McBryde WAE (1973) Free-energy relationships in coordination chemistry. III. A comprehensive index to complex stability. Can J Chem 51:2512–2524

    Google Scholar 

  • Nieboer E, Maxwell RI, Rossetto FE, Stafford AR, Stetsko PI (1986) Concepts in nickel carcinogenesis. In: Xavier AV (ed) Frontiers in bioinorganic Chemistry. VCH, Weinheim, pp S142–S151

    Google Scholar 

  • Noertemann B (1999) Biodegradation of EDTA. Appl Microbiol Biotechnol 34:751–759

    Google Scholar 

  • Nozaki Y (1997) A fresh look at element distribution in the North Pacific. Eos 78:207–211

    Article  Google Scholar 

  • Nuclear Task Force (1996) Report on bioaccumulation of elements to accompany the inventory of radionuclides in the Great Lakes Basin. www.ijc.org/boards/nuclear/bio/part2.html

  • Ochiai EI (1968) Catalytic functions of metal ions and their complexes. Coord Chem Rev 3:49–89

    Article  CAS  Google Scholar 

  • Oparin AI (1947) Die Entstehung des Lebens auf der Erde. Volk und Wissen, Berlin(East)/Leipzig

    Google Scholar 

  • Paquin P, Farley K, Santore RC, Kavvadas CE, Mooney KG, Winfield RP, Wu K-B, Di Toro DM (2003) Metals in aquatic systems: a review of exposure, bioaccumulation and toxicity models. SETAC, Pensacola

    Google Scholar 

  • Paul EA, Clark FE (1996) Soil Microbiology and Biochemistry. Academic Press, San Diego (USA)

    Google Scholar 

  • Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3353–3358

    Google Scholar 

  • Perez-Benito JF, Mata-Perez F, Brillas E (1987) Permanganate oxidation of glycine: kinetics, catalytic effects, and mechanisms. Can J Chem 65:2329–2337

    CAS  Google Scholar 

  • Persson J, Gardeström P, Näsholm T (2006) Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. J Exp Bot 57:2651–2659

    Article  PubMed  CAS  Google Scholar 

  • Pesch R, Schröder W (2006) Integrative exposure assessment through classification and regression trees on bioaccumulation of metals, related sampling chracteristics and ecoregions. Ecol Informatics 1:55–65

    Article  Google Scholar 

  • Pota G, Stedman G (1994) Exotic behaviour of chemical reaction systems. Acta Chim Hungarica – Model Chem 131:229–268

    Google Scholar 

  • Price NM, Morel FMM (1990) Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344:658–660

    Article  CAS  Google Scholar 

  • Purvis OW (1984) The occurrence of copper oxalate in lichens growing on copper sulphide-bearing rocks in Scandinavia. The Lichenologist 16: 197–204

    Google Scholar 

  • Rechenberg I (1973) Evolutionsstrategie – optimierung technischer systeme nach prinzipien der biologischen evolution. Fromman-Holzboog, Stuttgart

    Google Scholar 

  • Rehder D (1991) Bioanorganische chemie des vanadiums. Angewandte Chemie 103:925–942

    Article  Google Scholar 

  • Reis PM, Silva JAL, Frausto da Silva JJR, Pombeiro AJL (2000) Amavadine as a catalyst for the peroxidative halogenation, hydroxylation and oxygenation of alkanes and benzene. Chem Commun 2000:1845–1846

    Article  Google Scholar 

  • Riedel E (2004) Moderne anorganische chemie. De Gruyter, Berlin/New York

    Google Scholar 

  • Rocha RC, Rein FN, Toma HE (2002) Electrochemical parametrization of a series of tetra- and pentadentate EDTA complexes of ruthenium. Inorg Chem Commun 5:891–896

    Article  CAS  Google Scholar 

  • Rosenzweig AC (2001) Copper delivery by metallochaperone proteins. Acc Chem Res 34:119–128

    Article  PubMed  CAS  Google Scholar 

  • Rothenberg G (2008) Catalysis. Wiley/VCH, Weinheim/Bergstrasse

    Book  Google Scholar 

  • Santosa SJ, Wada S, Tanaka S (1994) Distribution and cycle of arsenic compounds in the ocean. Appl Organometal Chem 8:273–283

    Article  CAS  Google Scholar 

  • Sapundjieva K, Kouzmanova J, Vassilev A, Kartalska Y, Krastev S (2003) Metal phytoextraction on carbonate rich soils: a greenhouse study. In: Vanek T, Schwitzguebel JP (eds) Phytoremediation inventory. COST action 837 View, pp 37

    Google Scholar 

  • Sarapu AC, Fenske RF (1975) Photoelectron spectra and electrochemical potentials of some nitrile and isocyanide complexes. Inorg Chem 14:247–251

    Article  CAS  Google Scholar 

  • Scheffer F, Schachtschabel P, Blume HP, Brümmer G, Hartge KH, Schwertmann U (1998) Lehrbuch der Bodenkunde. 14. Aufl., Enke, Stuttgart

    Google Scholar 

  • Schilling CH, Palsson BO (1998) The underlying pathway structure of biochemical reaction networks. Proc Nat Acad Sci USA 95:4193–4198

    Article  PubMed  CAS  Google Scholar 

  • Schrauzer GN (1976) Neuere Entwicklungen auf dem Gebiet des Vitamins B12. Angewandte Chemie 88:465–474

    Article  CAS  Google Scholar 

  • Schröder W, Fränzle O (1992) Schwermetall-Frachten der Assimilationsorgane von Waldbäumen. Schriften des Naturwissenschaftlichen Vereins für Schleswig-Holstein 62:77–92

    Google Scholar 

  • Schuster P (1984) Evolution between chemistry and biology. Orig Life Evol Biosph 14:3–14

    Article  CAS  Google Scholar 

  • Schüürmann G (1991) Do Hammett constants model electronic properties in QSARs? Sci Total Environ 109(110):221–235

    Article  Google Scholar 

  • Schüürmann G, Wenzel KD, Weißflog L, Wienhold K, Müller E (1994) Ökologische Situation der Region Leipzig-Halle. III. Ökotoxikologische Charakterisierung der Schwermetall-Immissionsmuster. UWSF- Zeitschrift für Umweltchemie und Ökotoxikologie 6:351–358

    Article  Google Scholar 

  • Schwartz L (2009): Synthetic [FeFe] hydrogenase active site model complexes. Ph.D. thesis, Uppsala University

    Google Scholar 

  • Schwitzguebel JP, Porta A (2003) Outlook and expected developments. In: Vanek T, Schwitzguebel JP (Hrg.) (eds) Phytoremediation Inventory. COST Action 837 View. Hlavacek. pp 79–84

    Google Scholar 

  • Seilacher A (2008) Ediacara – Leben wie auf einem anderen Planeten. In: Betz O, Köhler H (eds) Die evolution des lebendigen. Attempto, Tübingen, pp 97–115

    Google Scholar 

  • Severin K, Lee DH, Martinez JA, Ghadiri MR (1998) Peptide self-replication via template-directed ligation. Chem Eur 3:1017–1024

    Article  Google Scholar 

  • Sigg L, Stumm W (1994) Aquatische Chemie. Eine Einführung in die Chemie wässriger Lösungen und natürlicher Gewässer. vdf Hochschulverlag and Teubner, Stuttgart

    Google Scholar 

  • Sillen LG (1967) How have seawater and air got their present compositions? Chem Br 1:291–297

    Google Scholar 

  • Sovago I, Kiss T, Gergely A (1993) Critical survey of the stability constants of complexes of aliphatic amino acids (technical report); IUPAC Commission on equilibrium data. Pure Appl Chem 65:1029–1080

    Article  CAS  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry. The biology of elements from molecules to the biosphere. Princeton University Press, Princeton, NJ/Oxford

    Google Scholar 

  • Still ER, Williams RJP (1980) Potential methods for selective accumulation of nickel(II) by plants. J Inorg Biochem 13:35–40

    Article  CAS  Google Scholar 

  • Strasburger E, Sitte P (1991) Lehrbuch der Botanik für Hochschulen, 33rd ed. Gustav Fischer, Stuttgart/Jena/New York

    Google Scholar 

  • Strasdeit H (2001) Das erste cadmiumspezifische Enzym. Angewandte Chemie 113:730–732

    Article  Google Scholar 

  • Sunda WG, Huntsman SA (1988) Effect of sunlight on redox cycles of manganese in the southwestern Sargasso Sea. Deep-Sea Res 35:1297–1317

    Article  CAS  Google Scholar 

  • Tabata M, Sarkar B (1992) A specific nickel (II)–transfer process between the native sequence peptide representing the nickel (II)-transport site of human serum albumin and L-histidine. J Inorg Biochem 45:93–104

    Article  PubMed  CAS  Google Scholar 

  • Taube H (1952) Rates and mechanisms of substitution in inorganic complexes in solution. Chem Rev 52:69–126

    Article  Google Scholar 

  • Ting IP, Zschoche WC (1970) Asparagine biosynthesis by cotton roots. Plant Physiol 45:429–434

    Article  PubMed  CAS  Google Scholar 

  • Thayer JS (1995) Environmental Chemistry of the Heavy Elements - Hydrido and Organo Compounds. VCH, New York and Weinheim

    Google Scholar 

  • Tobe ML (1976) Reaktionsmechanismen der Anorganischen Chemie. Verlag Chemie/Physik Verlag, Weinheim

    Google Scholar 

  • Tottey S, Harvie DR, Robinson NJ (2005) Understanding how cells allocate metals using metal-sensors and metallochaperones. Acc Chem Res 38:775–783

    Article  PubMed  CAS  Google Scholar 

  • Tyler G (2004b) Ionic charge, radius, and potential control root/soil concentration ratios of fifty cationic elements in the organic horizon of a beech (Fagus sylvatica) forest podzol. Sci Total Environ 329:231–239

    Article  PubMed  CAS  Google Scholar 

  • Vallee BL, Williams RJP (1968) Metalloenzymes. The entatic nature of their active sites. Proc Nat Acad Sci USA 59:498–505

    Google Scholar 

  • Van der Valk AG (2003) The biology of freshwater wetlands. Oxford University Press, Oxford

    Google Scholar 

  • Vernay P, Vercraene M, Jean L, Gauthier-Moussard C, Hitmi A (2006) Changes in free amino acids in hyperaccumulator and tolerant plants during nickel stress. Abstractband COST 859 Scientific Workshop St.Etienne 2006: omics approaches and agricultural management: driving forces to improve food quality and safety?

    Google Scholar 

  • Waddington C (1972) Nichtwäßrige Lösungsmittel. Heidelberg, Utb

    Google Scholar 

  • Weltje L (2003) Bioavailability of Lanthanides to freshwater organisms. Speciation, accumulation and toxicity. Ph.D. thesis. Technical University Delft, NL

    Google Scholar 

  • Wharton D (2002) Life at the limits. Organisms in extreme environments. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Williams RJP (1983) Symbiotic chemistry of metals and proteins. Chem Br 17:1009–1013

    Google Scholar 

  • Williams RJP (1986) Missing information in bio-inorganic chemistry. Coord Chem Rev 79:175–193

    Article  Google Scholar 

  • Williams RJP, Frausto Da Silva JJR (1996) The natural selection of the chemical elements. Clarendon, Oxford

    Google Scholar 

  • Willner H, Aubke F (2002) Metal carbonyl cations and their derivatives – a new class of superelectrophiles. In: Meyer G, Naumann D, Wesemann L (eds) Inorganic chemistry highlights. Wiley-VCH, Weinheim

    Google Scholar 

  • Woelkerling WJ, Gough SB (1976) Wisconsin desmids. III. Desmid community composition and distribution in relation to lake type and water chemistry. Hydrobiologia 51:3–31

    Article  Google Scholar 

  • Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34: 938–945

    Article  PubMed  CAS  Google Scholar 

  • Wünschmann S, Markert B, Fränzle S (2004) Transfer von Elementen in die Muttermilch. Ecomed, Landsberg/Lech

    Google Scholar 

  • Yang W (2008) An equivalent metal ion in one- and two-metal-ion catalysis. Nat Struct Mol Biol 15:1228–1231

    Article  PubMed  CAS  Google Scholar 

  • Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440:1078–1082

    Article  PubMed  CAS  Google Scholar 

  • Yu X-Z, Gu J-D (2009) Uptake, accumulation and metabolic response of ferricyanide in weeping willows. J Environ Monit 11:145–152

    Article  PubMed  CAS  Google Scholar 

  • Zabinski RF, Toney MD (2001) Metal ion inhibition of nonenzymatic pyridoxal phosphate catalysis of decarboxylation and transamination. J Am Chem Soc 123:193–198

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Fränzle .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fränzle, S. (2010). Autocatalytic Processes and the Role of Essential Elements in Plant Growth. In: Chemical Elements in Plant and Soil: Parameters Controlling Essentiality. Tasks for Vegetation Science, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2752-8_2

Download citation

Publish with us

Policies and ethics