Skip to main content

Prostate

  • Chapter
  • 750 Accesses

Part of the book series: Human Cell Culture ((HUCC,volume 7))

Abstract

Evidence for stem cells in the adult prostate comes from studies performed in rodents. Isaacs and Coffey [20] showed that castration in male rats resulted in the involution of prostate gland with persistence of the basal layer. On replacement of androgens, the prostate regained its original size [20]. It was concluded that a population of cells in the basal layer is capable of reconstituting the prostate in the presence of androgens. Since then good evidence of the existence and characterization of stem or stem like cells has been shown for mouse prostate [2, 23, 58]. Stem-like cells have also been described in cell lines derived from human prostate [34, 46] and from transplantation studies of human malignant prostate in mice [35]. In contrast to some tissues [10, 11, 28, 48, 49], isolation and characterization of stem cells from freshly procured human prostate tissue has proved difficult. Although there are numerous studies that have attempted to isolate, propagate and characterize human prostate derived stem cells; conclusive evidence for the existing of self-renewing, multipotential human prostate stem cells has proved elusive [46].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arenas MI, Romo E, de G, I, de Bethencourt FR, Sanchez-Chapado M, Fraile B and Paniagua R. A lectin histochemistry comparative study in human normal prostate, benign prostatic hyperplasia, and prostatic carcinoma. Glycoconj J 16: 375–382, 1999.

    Article  PubMed  CAS  Google Scholar 

  2. Azuma M, Hirao A, Takubo K, Hamaguchi I, Kitamura T and Suda T. A quantitative matrigel assay for assessing repopulating capacity of prostate stem cells. Biochem Biophys Res Commun 338: 1164–1170, 2005.

    Article  PubMed  CAS  Google Scholar 

  3. Bhatt RI, Brown MD, Hart CA, Gilmore P, Ramani VA, George NJ and Clarke NW. Novel method for the isolation and characterisation of the putative prostatic stem cell. Cytometry 54A: 89–99, 2003.

    Article  Google Scholar 

  4. Blau HM, Brazelton TR and Weimann JM. The evolving concept of a stem cell: entity or function? Cell 105: 829–841, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Bogden AE, Haskell PM, LePage DJ, Kelton DE, Cobb WR and Esber HJ. Growth of human tumor xenografts implanted under the renal capsule of normal immunocompetent mice. Exp Cell Biol 47: 281–293, 1979.

    PubMed  CAS  Google Scholar 

  6. Chung LW and Cunha GR. Stromal-epithelial interactions: II. Regulation of prostatic growth by embryonic urogenital sinus mesenchyme. Prostate 4: 503–511, 1983.

    Article  PubMed  CAS  Google Scholar 

  7. Collins AT, Habib FK, Maitland NJ and Neal DE. Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 114: 3865–3872, 2001.

    PubMed  CAS  Google Scholar 

  8. Colombel M, Vacherot F, Diez SG, Fontaine E, Buttyan R and Chopin D. Zonal variation of apoptosis and proliferation in the normal prostate and in benign prostatic hyperplasia. Br J Urol 82: 380–385, 1998.

    PubMed  CAS  Google Scholar 

  9. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE and Eggan K. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321: 1218–1221, 2008.

    Article  PubMed  CAS  Google Scholar 

  10. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ and Wicha MS. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253–1270, 2003.

    Article  PubMed  CAS  Google Scholar 

  11. Dontu G, Al Hajj M, Abdallah WM, Clarke MF and Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif 36 Suppl 1: 59–72, 2003.

    Article  PubMed  CAS  Google Scholar 

  12. Franks LM. Benign nodular hyperplasia of the prostate: a review. Ann R Coll Surg 14: 92–106, 1954.

    Google Scholar 

  13. Fuchs E, Tumbar T and Guasch G. Socializing with the neighbors: stem cells and their niche. Cell 116: 769–778, 2004.

    Article  PubMed  CAS  Google Scholar 

  14. Goodell MA, Brose K, Paradis G, Conner AS and Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183: 1797–1806, 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Goto K, Salm SN, Coetzee S, Xiong X, Burger PE, Shapiro E, Lepor H, Moscatelli D and Wilson EL. Proximal prostate stem cells are programmed to regenerate a proximal-distal ductal axis. Stem Cells 24: 1859–1868, 2006.

    Article  PubMed  CAS  Google Scholar 

  16. Gritti A, Frolichsthal-Schoeller P, Galli R, Parati EA, Cova L, Pagano SF, Bjornson CR and Vescovi AL. Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci 19: 3287–3297, 1999.

    PubMed  CAS  Google Scholar 

  17. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE and Melton DA. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26: 795–797, 2008.

    Article  PubMed  CAS  Google Scholar 

  18. Hudson DL, Guy AT, Fry P, O’Hare MJ, Watt FM and Masters JR. Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J Histochem Cytochem 49: 271–278, 2001.

    PubMed  CAS  Google Scholar 

  19. Hudson DL, O’Hare M, Watt FM and Masters JR. Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab Invest 80: 1243–1250, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Isaacs JT and Coffey DS. Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl 2: 33–50, 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA and Lemischka IR. A stem cell molecular signature. Science 298: 601–604, 2002.

    Article  PubMed  CAS  Google Scholar 

  22. Kassen A, Sutkowski DM, Ahn H, Sensibar JA, Kozlowski JM and Lee C. Stromal cells of the human prostate: initial isolation and characterization. Prostate 28: 89–97, 1996.

    Article  PubMed  CAS  Google Scholar 

  23. Lawson DA, Xin L, Lukacs RU, Cheng D and Witte ON. Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci U S A 104: 181–186, 2007.

    Article  PubMed  CAS  Google Scholar 

  24. Leung CS and Srigley JR. Distribution of lipochrome pigment in the prostate gland: biological and diagnostic implications. Hum Pathol 26: 1302–1307, 1995.

    Article  PubMed  CAS  Google Scholar 

  25. Litvinov IV, Vander Griend DJ, Xu Y, Antony L, Dalrymple SL and Isaacs JT. Low-calcium serum-free defined medium selects for growth of normal prostatic epithelial stem cells. Cancer Res 66: 8598–8607, 2006.

    Article  PubMed  CAS  Google Scholar 

  26. Liu AY, True LD, LaTray L, Nelson PS, Ellis WJ, Vessella RL, Lange PH, Hood L and van den EG. Cell-cell interaction in prostate gene regulation and cytodifferentiation. Proc Natl Acad Sci U S A 94: 10705–10710, 1997.

    Article  PubMed  CAS  Google Scholar 

  27. Lowsley OS. The development of the human prostate gland with reference to the development of other structures at the neck of the urinary bladder. Am J Anat 13: 299–349, 1912.

    Article  Google Scholar 

  28. McKay R. Stem cells in the central nervous system. Science 276: 66–71, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. McNeal JE. The zonal anatomy of the prostate. Prostate 2: 35–49, 1981.

    Article  PubMed  CAS  Google Scholar 

  30. McNeal JE, Redwine EA, Freiha FS and Stamey TA. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol 12: 897–906, 1988.

    PubMed  CAS  Google Scholar 

  31. Mirowitz SA and Hammerman AM. CT depiction of prostatic zonal anatomy. J Comput Assist Tomogr 16: 439–441, 1992.

    Article  PubMed  CAS  Google Scholar 

  32. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW and Daley GQ. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451: 141–146, 2008.

    Article  PubMed  CAS  Google Scholar 

  33. Park IK, Morrison SJ and Clarke MF. Bmi1, stem cells, and senescence regulation. J Clin Invest 113: 175–179, 2004.

    PubMed  CAS  Google Scholar 

  34. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K and Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and A. Cancer Res 65: 6207–6219, 2005.

    Article  PubMed  CAS  Google Scholar 

  35. Patrawala L, Calhoun-Davis T, Schneider-Broussard R and Tang DG. Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67: 6796–6805, 2007.

    Article  PubMed  CAS  Google Scholar 

  36. Peehl DM and Stamey TA. Serial propagation of adult human prostatic epithelial cells with cholera toxin. In Vitro 20: 981–986, 1984.

    Article  PubMed  CAS  Google Scholar 

  37. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC and Melton DA. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298: 597–600, 2002.

    Article  PubMed  CAS  Google Scholar 

  38. Reya T, Morrison SJ, Clarke MF and Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 414: 105–111, 2001.

    Article  PubMed  CAS  Google Scholar 

  39. Reynolds BA and Rietze RL. Neural stem cells and neurospheres – re-evaluating the relationship. Nat Methods 2: 333–336, 2005.

    Article  PubMed  CAS  Google Scholar 

  40. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ and Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117: 3539–3545, 2004.

    Article  PubMed  CAS  Google Scholar 

  41. Rietze RL, Valcanis H, Brooker GF, Thomas T, Voss AK and Bartlett PF. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412: 736–739, 2001.

    Article  PubMed  CAS  Google Scholar 

  42. Sacco A, Doyonnas R, Kraft P, Vitorovic S and Blau HM. Self-renewal and expansion of single transplanted muscle stem cells. Nature 456: 502–506, 2008.

    Article  PubMed  CAS  Google Scholar 

  43. Schneider TE, Barland C, Alex AM, Mancianti ML, Lu Y, Cleaver JE, Lawrence HJ and Ghadially R. Measuring stem cell frequency in epidermis: a quantitative in vivo functional assay for long-term repopulating cells. Proc Natl Acad Sci U S A 100: 11412–11417, 2003.

    Article  PubMed  CAS  Google Scholar 

  44. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI and Eaves CJ. Purification and unique properties of mammary epithelial stem cells. Nature 439: 993–997, 2006.

    PubMed  CAS  Google Scholar 

  45. Takahashi K and Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676, 2006.

    Article  PubMed  CAS  Google Scholar 

  46. Tang DG, Patrawala L, Calhoun T, Bhatia B, Choy G, Schneider-Broussard R and Jeter C. Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 46: 1–14, 2007.

    Article  PubMed  CAS  Google Scholar 

  47. Till JE and McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14: 213–222, 1961.

    Article  PubMed  CAS  Google Scholar 

  48. Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR and Miller FD. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3: 778–784, 2001.

    Article  PubMed  CAS  Google Scholar 

  49. Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR and van der KD. Retinal stem cells in the adult mammalian eye. Science 287: 2032–2036, 2000.

    Article  PubMed  CAS  Google Scholar 

  50. Uchida S, Yokoo S, Yanagi Y, Usui T, Yokota C, Mimura T, Araie M, Yamagami S and Amano S. Sphere formation and expression of neural proteins by human corneal stromal cells in vitro. Invest Ophthalmol Vis Sci 46: 1620–1625, 2005.

    Article  PubMed  Google Scholar 

  51. Uzgare AR, Xu Y and Isaacs JT. In vitro culturing and characteristics of transit amplifying epithelial cells from human prostate tissue. J Cell Biochem 91: 196–205, 2004.

    Article  PubMed  CAS  Google Scholar 

  52. Villers A, Steg A and Boccon-Gibod L. Anatomy of the prostate: review of the different models. Eur Urol 20: 261–268, 1991.

    PubMed  CAS  Google Scholar 

  53. Villers A, Terris MK, McNeal JE and Stamey TA. Ultrasound anatomy of the prostate: the normal gland and anatomical variations. J Urol 143: 732–738, 1990.

    PubMed  CAS  Google Scholar 

  54. Weissman IL. The road ended up at stem cells. Immunol Rev 185: 159–174, 2002.

    Article  PubMed  CAS  Google Scholar 

  55. Worthington CC. Worthington enzyme manual: enzymes and related biochemicals. Free Hold: Worthington Biochemical Corp, 1988.

    Google Scholar 

  56. Xin L, Ide H, Kim Y, Dubey P and Witte ON. In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc Natl Acad Sci U S A 100 Suppl 1: 11896–11903, 2003.

    Article  CAS  Google Scholar 

  57. Xin L, Lawson DA and Witte ON. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci U S A 102: 6942–6947, 2005.

    Article  PubMed  CAS  Google Scholar 

  58. Xin L, Lukacs RU, Lawson DA, Cheng D and Witte ON. Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells 25: 2760–2769, 2007.

    Article  PubMed  CAS  Google Scholar 

  59. Zhou Q, Brown J, Kanarek A, Rajagopal J and Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455: 627–632, 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Foley, C., Brouilette, K., Kane, C., Patel, H., Yamamoto, H., Ahmed, A. (2009). Prostate. In: Masters, J.R., Palsson, B.Ø. (eds) Human Adult Stem Cells. Human Cell Culture, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2269-1_10

Download citation

Publish with us

Policies and ethics