Skip to main content

Infections, Autoimmunity, and Behçet’s Syndrome: What Liaison?

  • Chapter
  • First Online:
Behçet's Syndrome

Part of the book series: Rare Diseases of the Immune System ((RDIS))

Abstract

During the course of evolution, the immune system had to continuously shape and refine its mechanisms of defense against pathogens. In response to different microorganisms, specialized types of specific responses allow the recognition and elimination of infectious agents. All individuals harbor autoreactive T cells that need activation and critical expansion in order to start active autoimmune disease. In a number of human diseases and in their corresponding experimental animal models, it has been suggested that pathogens can induce disease through autoimmune mechanisms. In this chapter, we will focus our attention to the basis of the host immune response, the mechanisms of autoimmunity, and to the link between Helicobacter pylori infection and gastric autoimmunity, the relevance of Chlamydophila pneumoniae and inflammation in atherosclerosis, the role of Th17 responses in Lyme arthritis, as well as the link between Behçet’s syndrome and infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’Elios MM, Benagiano M, Della Bella C et al (2011) T-cell response to bacterial agents. J Infect Dev Ctries 5:640–645

    PubMed  Google Scholar 

  2. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24:677–688

    Article  PubMed  CAS  Google Scholar 

  3. Bettelli E, Oukka M, Kuchroo VK (2007) T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8:345–350

    Article  PubMed  CAS  Google Scholar 

  4. Kamogawa Y, Minasi LA, Carding SR, Bottomly K, Flavell RA (1993) The relationship of IL-4- and IFN gamma-producing T cells studied by lineage ablation of IL-4-producing cells. Cell 75:985–995

    Article  PubMed  CAS  Google Scholar 

  5. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    Article  PubMed  CAS  Google Scholar 

  6. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260:547–549

    Article  PubMed  CAS  Google Scholar 

  7. Okamura H, Kashiwamura S, Tsutsui H, Yoshimoto T, Nakanishi K (1998) Regulation of interferon-gamma. Curr Opin Immunol 10:259–264

    Article  PubMed  CAS  Google Scholar 

  8. Swain SL, Weinberg AD, English M (1990) CD4+ T cell subsets. Lymphokine secretion of memory cells and of effector cells that develop from precursors in vitro. J Immunol 144:1788–1799

    PubMed  CAS  Google Scholar 

  9. Constant SL, Bottomly K (1997) Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 15:297–322

    Article  PubMed  CAS  Google Scholar 

  10. Szabo SJ, Jacobson NG, Dighe AS, Gubler U, Murphy KM (1995) Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity 2:665–675

    Article  PubMed  CAS  Google Scholar 

  11. Hill GR, Cooke KR, Teshima T et al (1998) Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation. J Clin Invest 102:115–123

    Article  PubMed  CAS  Google Scholar 

  12. Hilkens CM, Snijders A, Vermeulen H, van der Meide PH, Wierenga EA, Kapsenberg ML (1996) Accessory cell-derived IL-12 and prostaglandin E2 determine the IFN-gamma level of activated human CD4+ T cells. J Immunol 56:1722–1727

    Google Scholar 

  13. Aggarwal S, Gurney AL (2002) IL-17: prototype member of an emerging cytokine family. J Leukoc Biol 71:1–8

    PubMed  CAS  Google Scholar 

  14. Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21:467–474

    Article  PubMed  CAS  Google Scholar 

  15. Ivanov II, McKenzie BS, Zhou L et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17 T helper cells. Cell 126:1121–1133

    Article  PubMed  CAS  Google Scholar 

  16. Benagiano M, Munari F, Ciervo A et al (2012) Chlamydophila pneumoniae phospholipase D (CpPLD) drives Th17 inflammation in human atherosclerosis. Proc Natl Acad Sci USA 109:1222–1227

    Article  PubMed  CAS  Google Scholar 

  17. Paccani SR, Benagiano M, Savino MT et al (2011) The adenylate cyclase toxin of Bacillus anthracis is a potent promoter of T(H)17 cell development. J Allergy Clin Immunol 27:1635–1637

    Article  Google Scholar 

  18. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564

    Article  PubMed  CAS  Google Scholar 

  19. Reiner SL, Locksley RM (1995) The regulation of immunity to Leishmania major. Annu Rev Immunol 13:151–177

    Article  PubMed  CAS  Google Scholar 

  20. Pirmez C, Yamamura M, Uyemura K, Oliveira MP, Silva FC, Modlin RL (1993) Cytokine patterns in the pathogenesis of human leishmaniasis. J Clin Invest 91:1390–1395

    Article  PubMed  CAS  Google Scholar 

  21. Badaro R, Johnson WD Jr (1993) The role of interferon-gamma in the treatment of visceral and diffuse cutaneous leishmaniasis. J Infect Dis 167:S13–S17

    Article  PubMed  Google Scholar 

  22. Contigli C, Teixeira DNS, Del Prete G et al (1999) Phenotype and cytokine profile of Schistosoma mansoni specific T cell lines and clones derived from schistosomiasis patients with distinct clinical forms. Clin Immunol 91:338–344

    Article  PubMed  CAS  Google Scholar 

  23. Sher A, Gazzinelli RT, Oswald IP et al (1992) Role of T-cell derived cytokines in the downregulation of immune responses in parasitic and retroviral infection. Immunol Rev 127:183–204

    Article  PubMed  CAS  Google Scholar 

  24. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178:2243–2247

    Article  PubMed  CAS  Google Scholar 

  25. Flynn JL, Chan J, Trieblod KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254

    Article  PubMed  CAS  Google Scholar 

  26. de Jong R, Altare F, Haagen IA et al (1998) Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280:1435–1438

    Article  PubMed  Google Scholar 

  27. Newport MJ, Huxley CM, Huston S et al (1996) A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 335:1941–1949

    Article  PubMed  CAS  Google Scholar 

  28. Kaufmann SH (2010) Novel tuberculosis vaccination strategies based on understanding the immune response. J Intern Med 267:337–353

    Article  PubMed  CAS  Google Scholar 

  29. Lahesmaa R, Yssel H, Batsford S et al (1992) Yersinia enterocolitica activates a T helper type 1-like T cell subset in reactive arthritis. J Immunol 148:3079–3085

    PubMed  CAS  Google Scholar 

  30. Zelante T, Bozza S, De Luca A et al (2009) Th17 cells in the setting of Aspergillus infection and pathology. Med Mycol 47:S162–S169

    Article  PubMed  CAS  Google Scholar 

  31. Rose NR, Bona C (1993) Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today 14:426–430

    Article  PubMed  CAS  Google Scholar 

  32. Benoist C, Mathis D (2001) Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat Immunol 2:797–801

    Article  PubMed  CAS  Google Scholar 

  33. Lori JA, Inman RD (1999) Molecular mimicry and autoimmunity. New Engl J Med 341:2068–2074

    Article  Google Scholar 

  34. Oldstone MBA (1998) Molecular mimicry and immune mediated disease. FASEB J 12:1255–1265

    PubMed  CAS  Google Scholar 

  35. Theofilopopoulos AN, Kono DH (1998) Mechanisms and genetics of autoimmunity. Ann NY Acad Sci 841:225–235

    Article  Google Scholar 

  36. Wucherpfenning KW (2001) Mechanisms for the induction of autoimmunity by infectious agents. J Clin Invest 108:1097–1104

    Google Scholar 

  37. Schrer MT, Ignatowicz L, Winslow GM, Kappler LW, Marrack P (1993) Superantigens: bacterial and viral proteins that manipulate the immune system. Annu Rev Cell Biol 9:101–128

    Article  Google Scholar 

  38. Lehmann PV, Forsthuber T, Miller A, Sercarz EE (1992) Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358:155–157

    Article  PubMed  CAS  Google Scholar 

  39. Miller SD, Vanderlugt CL, Begolka WS, Pao W, Yauch RL, Neville KL, Levy YK, Carrizosa A, Kim BS (1997) Persistent infection whit Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat Med 3:1133–1136

    Article  PubMed  CAS  Google Scholar 

  40. Krishna KM, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Slansky J, Ahmed R (1998) Counting antigen-specific CD8 T cells: a revaluation of bystander activation during viral infection. Immunity 8:177–187

    Article  Google Scholar 

  41. Bachmaier K, Neu N, de la Maza LM, Pal S, Hessel A, Penninger JM (1999) Chlamydia infections and heart disease linked through antigenic mimicry. Science 283:1335–1339

    Article  PubMed  CAS  Google Scholar 

  42. Hemmer B, Gran B, Zhao Y et al (1999) Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nat Med 5:1375–1382

    Article  PubMed  CAS  Google Scholar 

  43. Martin R, Gran B, Zhao Y et al (2001) Molecular mimicry and antigen-specific T-cell response in multiple sclerosis and chronic CNS Lyme disease. J Autoimmun 16:187–192

    Article  PubMed  CAS  Google Scholar 

  44. Rose NR, Mackay IR (2000) Molecular mimicry: a critical look at exemplary instances in human diseases. Cell Mol Life Sci 57:542–551

    Article  PubMed  CAS  Google Scholar 

  45. Hemmer B, Vergelli M, Pinilla C, Houghten R, Martin R (1998) Probing degeneracy in T-cell recognition using combinatorial peptide libraries. Immunol Today 19:163–168

    Article  PubMed  CAS  Google Scholar 

  46. Kersh GJ, Allen PM (1996) Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognized a large continuum of related ligands. J Exp Med 184:1259–1268

    Article  PubMed  CAS  Google Scholar 

  47. Akin E, Aversa J, Steere AC (2001) Expression of adhesion molecole in synovia patients with treatment-resistent Lyme arthritis. Infect Immunol 69:1774–1780

    Article  CAS  Google Scholar 

  48. Gross DM, Forsthuber T, Lehmann MT, Etling C, Ito K, Nagy ZA, Field JA, Steere AC, Huber BT (1998) Identification of LFA-1 candidate autoantigen in treatment-resistant Lyme arthritis. Science 281:703–706

    Article  PubMed  CAS  Google Scholar 

  49. Codolo G, Amedei A, Steere AC et al (2008) Borrelia burgdorferi-NapA driven Th17 cell inflammation in Lyme arthritis. Arthritis Rheum 58:3609–3617

    Article  PubMed  CAS  Google Scholar 

  50. Codolo G, Bossi F, Durigutto P, Della Bella C, Tedesco F, D’Elios S, Cimmino M, Cassatella MA, D’Elios MM, de Bernard M (2013) Orchestration of inflammation and adaptive immunity in Borrelia burgdorferi-induced arthritis by neutrophil-activating protein A. Arthritis Rheum 65:1232–1242

    Google Scholar 

  51. Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N, Yamaguchi T, Nomura T, Ito H, Nakamura T et al (2007) Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med 204(12):2803–2812

    Article  PubMed  CAS  Google Scholar 

  52. Shin JJ, Glickstein LJ, Steere AC (2007) High levels of inflammatory chemokines and cytokines in joint fluid and synovial tissue throughout the course of antibiotic-refractory lyme arthritis. Arthritis Rheum 56:1325–1335

    Article  PubMed  CAS  Google Scholar 

  53. Suerbaum S, Michetti P (2002) Helicobacter pylori infection. New Engl J Med 347:1175–1186

    Article  PubMed  CAS  Google Scholar 

  54. Uemura N, Okamoto S, YamamotoS, Matsumura N, Yamaguchi S, Yamakido M, Taniyama K, Sasaki N, Schempler RJ (2001) Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345:784–789

    Google Scholar 

  55. D’Elios MM, Appelmelk BJ, Amedei A, Bergman MP, Del Prete G (2004) Gastric autoimmunity: the role of Helicobacter pylori and molecular mimicry. Trends Mol Med 10:316–323

    Article  PubMed  Google Scholar 

  56. Amedei A, Bergman MP, Appelmelk BJ, Azzurri A, Benagiano M, Tamburini C, van der Zee R, Telford JL, Grauls CMV, D’Elios MM (2003) Molecular mimicry between Helicobacter pylori antigens and H+, K+-ATPase in human gastric autoimmunity. J Exp Med 198:1147–1156

    Article  PubMed  CAS  Google Scholar 

  57. D’Elios MM, Manghetti M, De Carli M et al (1997) Th1 effector cells specific for Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease. J Immunol 158:962–967

    PubMed  Google Scholar 

  58. Marshall AC, Alderuccio F, Toh BH (2002) Fas/CD95 is required for gastric mucosal damage in autoimmune gastritis. Gastroenterology 123:780–789

    Article  PubMed  CAS  Google Scholar 

  59. Wolf K, Fischer E, Hackstadt T (2000) Ultrastructural analysis of developmental events in Chlamydia pneumoniae-infected cells. Infect Immun 68:2379–2385

    Article  PubMed  CAS  Google Scholar 

  60. Peters J (2005) Silencing or permanent activation: host-cell responses in models of persistent Chlamydia pneumoniae infection. Cell Microbiol 7:1099–1108

    Article  PubMed  CAS  Google Scholar 

  61. Hansson GK, Robertson AK, Nauclér CS (2006) Inflammation and atherosclerosis. Annu Rev Pathol 59(1):297–329

    Article  Google Scholar 

  62. Campbell LA, Kuo CC (2004) Chlamydia pneumonia-an infectious risk factor for atherosclerosis? Nat Rev Microbiol 2:23–32

    Article  PubMed  CAS  Google Scholar 

  63. Benagiano M, Azzurri A, Ciervo A, Ferrari M, Telford JL, Baldari CT, Romagnani S, Cassone A, D’Elios MM (2003) T helper type-1 lymphocyte-driven inflammation in human atherosclerotic lesions. Proc Natl Acad Sci USA 100:6658–6663

    Google Scholar 

  64. Benagiano M, D’Elios MM, Amedei A et al (2005) Human 60-kDa heat shock protein is a target autoantigen of T cells derived from atherosclerothique plaques. Immunol 174:6509–6517

    CAS  Google Scholar 

  65. Metzler B, Mayr M, Dietrich H, Singh M, Wiebe E, Xu Q, Wick G (1999) Inhibition of arteriosclerosis by T-cell depletion in normocholesterolaemic rabbits immunised with heat shock protein 65. Arterioscler Thromb Vasc Biol 19:1905–1911

    Article  PubMed  CAS  Google Scholar 

  66. Xu Q, Dietrich H, Steiner HJ, Gown AM, Schoel B, Mikuz G, Kaufmann SH, Wick G (1992) Induction of atherosclerosis in normocho- lesterolaemic rabbits by immunisation with heat shock protein. Arterioscler Thromb 12:789–799

    Article  PubMed  CAS  Google Scholar 

  67. Xu Q, Kleindienst R, Waitz W, Diertrich H, Wick G (1993) Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65. J Clin Invest 91:2693–2702

    Article  PubMed  CAS  Google Scholar 

  68. Lehner T, Lavery E, Smith R et al (1997) The role of heat shock protein, microbial and autoimmune agents in the aetiology of Behçet’s disease. Int Rev Immunol 14:21–32

    Article  PubMed  CAS  Google Scholar 

  69. Hatemi G, Yazici H (2011) Behçet syndrome and infections. Best Pract Res Clin Rheum 25:389–406

    Article  Google Scholar 

  70. Lehner T, Lavery E, Smith R, van der Zee R, Mizushima Y, Shinnick T (1991) Association between the 65-kilodalton heat shock protein, Streptococcus sanguis, and the corresponding antibodies in Behçet’s syndrome. Infect Immun 59:1434–1441

    PubMed  CAS  Google Scholar 

  71. Direskeneli H, Hasan A, Shinnick T, Mizushima R, van der Zee R, Fortune F et al (1996) Recognition of B-cell epitopes of the 65 kDa HSP in Behçet’s disease. Scand J Immunol 43:464–471

    Article  PubMed  CAS  Google Scholar 

  72. Stanford MR, Kasp E, Whiston R, Hasan A, Todryk S, Shinnick T et al (1994) Heat shock protein peptides reactive in patients with Behçet’s disease are uveitogenic in Lewis rats. Clin Exp Immunol 97:226–231

    Article  PubMed  CAS  Google Scholar 

  73. Uchio E, Stanford M, Hasan A, Satoh S, Ohno S, Shinnick T et al (1998) HSP-derived peptides inducing uveitis and IgG and IgA antibodies. Exp Eye Res 67:719–727

    Article  PubMed  CAS  Google Scholar 

  74. Shaker O, Ay El-Deen MA, El Hadidi H, Grace BD, El Sherif H, Halim AA (2007) The role of heat shock protein 60, vascular endothelial growth factor and anti phospholipid antibodies in Behçet disease. Brit J Dermatol 156:32–37

    Google Scholar 

  75. Bank I, Duvdevani M, Livneh A (2003) Expansion of gammadelta T-cells in Behçet’s disease: role of disease activity and microbial flora in oral ulcers. J Lab Clin Med 141:33–40

    Article  PubMed  CAS  Google Scholar 

  76. Mochizuki N, Suzuki N, Takeno M, Nagafuchi H, Harada T, Kaneoka H (1994) Fine antigen specificity of human gamma delta T cell lines (V gamma 9 +) established by repetitive stimulation with a serotype (KTH-1) of a gram-positive bacterium Streptococcus sanguis. Eur J Immunol 24:1536–1543

    Article  PubMed  CAS  Google Scholar 

  77. Ergun T, Ince U, Demiralp EE, Direskeneli H, Gurbuz O, Gurses L et al (2001) HSP 60 expression in mucocutaneous lesions of Behçet’s disease. J Am Acad Dermatol 45:904–909

    Article  PubMed  CAS  Google Scholar 

  78. Hirohata S, Oka H, Mizushima Y (1992) Streptococcal related antigens stimulate production of IL-6 and interferon-gamma by T cells from patients with Behçet’s disease. Cell Immunol 140:410–419

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the unlimited support given to our studies by Associazione Italiana Sindrome e Malattia di Behçet (SIMBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Milco D’Elios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

D’Elios, M.M., Benagiano, M., Amedei, A., Emmi, G. (2014). Infections, Autoimmunity, and Behçet’s Syndrome: What Liaison?. In: Emmi, L. (eds) Behçet's Syndrome. Rare Diseases of the Immune System. Springer, Milano. https://doi.org/10.1007/978-88-470-5477-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5477-6_5

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5476-9

  • Online ISBN: 978-88-470-5477-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics