Skip to main content

Contrast Ultrasound Technology

  • Chapter

Abstract

One of the major diagnostic objectives in using an ultrasound contrast agent in the liver is to detect flow in the circulation at a level that is lower than would otherwise be possible. The echoes from blood associated with such flow — in the sinusoids for example — exist in the midst of echoes from the surrounding solid structures of the liver parenchyma, echoes which are almost always stronger than even the contrast-enhanced blood echo. When they can be seen, blood vessels in a nonenhanced image have a low echo level, so that an echo-enhancing agent actually lowers the contrast between blood and the surrounding tissue, making the lumen of the blood vessel less visible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apfel RE, Holland CK (1991) Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med and Biol 17:175–185

    Google Scholar 

  • Becher H (1997) Second harmonic imaging with Levovist: initial clinical experience. In: Cate FT, deJong N (eds) Second European Symposium on Ultrasound Contrast Imaging. Book of Abstracts. Erasmus Univ, Rotterdam p 24

    Google Scholar 

  • Becher H, Burns PN (2000) Handbook of Contrast echocardiography. Springer-Verlag Berlin, http://www.sunnybrook.utoronto.ca/EchoHandbook

    Google Scholar 

  • Bleeker H, Shung K, Barnhart J (1990) On the application of ultrasonic contrast agents for blood flowmetry and assessment of cardiac perfusion. J Ultrasound Med 9:461–471

    Google Scholar 

  • Brennan CE (1995) Cavitation and bubble dynamics. Oxford University Press, New York

    Google Scholar 

  • Burns PN, Powers JE, Fritzsch T (1992) Harmonic imaging: a new imaging and Doppler method for contrast enhanced ultrasound. Radiology 185:142

    Google Scholar 

  • Burns PN, Powers JE, Hope Simpson D, Uhlendorf V, Fritzsch T (1993) Harmonic contrast enhanced Doppler as a method for the elimination of clutter - In vivo duplex and color studies. Radiology 189:285

    Google Scholar 

  • Burns PN, Powers JE, Hope Simpson D, Brezina A, Kolin A, Chin CT, Uhlendorf V, Fritzsch T (1994) Harmonic power mode Doppler using microbubble contrast agents: an improved method for small vessel flow imaging. Proc IEEE UFFC:1547–1550

    Google Scholar 

  • Burns PN, Wilson SR, Muradali D, Powers JE, Fritzsch T (1996a) Intermittent US harmonic contrast enhanced imaging and Doppler improves sensitivity and longevity of small vessel detection. Radiology 201:159

    Google Scholar 

  • Burns PN, Wilson SR, Muradali D, Powers JE, Greener Y (1996b) Microbubble destruction is the origin of harmonic signals from FS069. Radiology 201:158

    Google Scholar 

  • Burns PN, Wilson SR, Hope Simpson D (2000) Pulse inversion imaging of liver blood flow: An improved method for characterization of focal masses with microbubble contrast. Invest Radiol 35:58–71

    Article  Google Scholar 

  • Child SZ, Hartman CL, Schery LA, Carstensen EL (1990) Lung damage from exposure to pulsed ultrasound. Ultrasound Med and Biol 16:817–825

    Article  Google Scholar 

  • Chin CT, Burns PN (1997) Predicting the acoustic response of a microbubble population for contrast imaging. In: Proc. IEEE Ultrason. Symp., pp 1557–1560

    Google Scholar 

  • Dayton PA, Morgan KE, Klibanov AL, Brandenburger GH, Ferrara KW (1999) Optical and acoustical observations of the effects of ultrasound contrast agents. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 46:220–232

    Article  Google Scholar 

  • de Jong N (1997) Physics of microbubble scattering. In: Nanda NC, Schlief R, Goldberg BB (eds) Advances in echo imaging using contrast enhancement. Kluwer Academic Publishers, Dubai pp 39–64

    Chapter  Google Scholar 

  • Everbach EC, Makin IRS, Francis CW, Meltzer RS (1998) Effect of acoustic cavitation on platelets in the presence of an echo-contrast agent. Ultrasound Med and Biol 24:129–136

    Article  Google Scholar 

  • Hamilton MF, Blackstock DT (1998) Nonlinear acoustics. Academic Press, San Diego

    Google Scholar 

  • Holland CK, Roy RA, Apfel RE, Crum LA (1992) In vitro detection of cavitation induced by a diagnostic ultrasound system. IEEE Trans. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 29:95–101

    Article  Google Scholar 

  • Hope Simpson D, Chin CT, Burns PN (1999) Pulse inversion doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Transactions UFFC 46:372–382

    Article  Google Scholar 

  • Kono Y, Moriyasu F, Nada T, Suginoshita Y, Matsumura T, Kobayashi K, Nakamura T, Chiba T (1997) Gray scale second harmonic imaging of the liver: a preliminary animal study. Ultrasound Med Biol 23(5):719–726

    Article  Google Scholar 

  • Miller DL, Gies RA, Chrisler WB (1997) Ultrasonically induced hemolysis at high cell and gas body concentrations in a thin-disk exposure chamber. Ultrasound Med and Biol 23:625–633

    Article  Google Scholar 

  • Miller DL, Thomas RM (1995) Ultrasound contrast agents nucleate inertial cavitation in vitro. Ultrasound Med Biol 21:1059–1065

    Article  Google Scholar 

  • Miller MW, Miller DL, Brayman A (1996) A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med and Biol 22:1131–1154

    Article  Google Scholar 

  • Mulvagh SL, Foley DA, Aeschbacher BC, Klarich KK, Seward JB (1996) Second harmonic imaging of an intravenously administered echocardiographic contrast agent: visualization of coronary arteries and measurement of coronary blood flow. J Am Coll of Cardiol 27:1519–1525

    Article  Google Scholar 

  • Neppiras EA, Nyborg WL, Miller PL (1983) Nonlinear behavior and stability of trapped micronsized cylindrical gas bubbles in an ultrasound field. Ultrasonics 21:109–115

    Article  Google Scholar 

  • Ophir J, Parker KJ (1989) Contrast agents in diagnostic ultrasound [published erratum appears in Ultrasound Med BioI 1990;16(2):209]. Ultrasound Med Biol 15:319–333

    Article  Google Scholar 

  • Plesset MS (1949) The dynamics of cavitation bubbles. J Appl Mech 16:272–282

    Google Scholar 

  • Poritsky H (1951) The collapse or growth of a spherical bubble or cavity in a viscous fluid. In: Sternberg E (ed) First U.S. National Congress on Applied Mechanics, Washington DC, pp 813–821

    Google Scholar 

  • Porter TR, Xie F (1995) Transient myocardial contrast after initial exposure to diagnostic ultrasound pressures with minute doses of intravenously injected microbubbles. Demonstration and potential mechanisms. Circulation 92:2391–2395

    Google Scholar 

  • Porter TR, Xie F, Kricsfeld D, Armbruster RW (1996) Improved myocardial contrast with second harmonic transient ultrasound response imaging in humans using intravenous perfluorocarbon-exposed sonicated dextrose albumin. Journal of the American College of Cardiology 27:1497–1501

    Article  Google Scholar 

  • Rayleigh L (1917) On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity. Philosophy Magazine Series 6:94–98

    Article  Google Scholar 

  • Taylor KJ, Burns PN, Wells PNT (1996) Clinical Applications of Doppler Ultrasound. New York: Raven Press

    Google Scholar 

  • Tiemann K, Lohmeier S, Kuntz S, Koster J, Pohl C, Burns P, Porter TR, Nanda NC, Luderitz B, Becher H (1999) Real-time contrast echo assessment of myocardial perfusion at low emission power: first experimental and clinical results using power pulse inversion imaging. Echocardiography 16:799–809

    Article  Google Scholar 

  • Uhlendorf V, Hoffmann C (1994) Nonlinear acoustical response of coated microbubbles in diagnostic ultrasound. Proc IEEE Ultrasonics Symp: 1559–1562

    Google Scholar 

  • Uhlendorf V, Scholle F-D (1996) Imaging of spatial distribution and flow of microbubbles using nonlinear acoustic properties. Acoustical Imaging 22:233–238

    Article  Google Scholar 

  • Williams AR, Kubowicz G, Cramer E (1991) The effects of the microbubble suspension SHU 454 (Echovist) on ultrasound-induced cell lysis in a rotating tube exposure system. Echocardiography 8:423–433

    Article  Google Scholar 

  • Wilson SR, Burns PN (2001) Liver Mass Evaluation With Ultrasound: The impact of microbubble contrast agents and pulse inversion imaging. Sem in Liver Dis 21:147–161

    Article  Google Scholar 

  • Wilson SR, Burns PN, Muradali D, Wilson J, Lai X (2000) Harmonic Hepatic Ultrasound with Microbubble Contrast Agent: Initial experience showing improved characterization of hemangioma, hepatocellular carcinoma, and metastasis. Radiology 215:153–161

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Italia

About this chapter

Cite this chapter

Burns, P.N. (2003). Contrast Ultrasound Technology. In: Contrast-Enhanced Ultrasound of Liver Diseases. Springer, Milano. https://doi.org/10.1007/978-88-470-2093-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2093-1_1

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2168-6

  • Online ISBN: 978-88-470-2093-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics