Skip to main content

Systemic Antibiotics

  • Chapter
  • First Online:
  • 2148 Accesses

Abstract

Systemic antibiotics remain the main causative therapy for critically ill patients with infections. This chapter provides a clinical review of the antibiotics available for systemic administration in the critically ill septic patient. Pharmacological properties and microbiological factors, together with specific alterations in the critically ill patient, affect antimicrobial administration regimen in the intensive care unit and contribute to the final outcome (clinical cure and possibly eradication versus failure and eventual selection of resistance). The opportunity of using appropriate pharmacokinetic/pharmacodynamic (PK/PD) parameters to optimize dosing/administration modality in this special patient population is of great help in improving antimicrobial drug administration and preserving their efficacy, as there are now fewer new therapeutic options than in the past.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gunderson BW, Ross GH, Ibrahim KH, Rotschafer JC (2001) What do we really know about antibiotic pharmacodynamics? Pharmacotherapy 21:302s–318s

    Article  PubMed  CAS  Google Scholar 

  2. Mehrota R, De Gaudio R, Palazzo M (2004) Antibiotic pharmacokinetic and pharmacodynamic considerations in critical illness. Int Care Med 30:2145–2156

    Article  Google Scholar 

  3. Kollef MH (2001) Optimizing antibiotic therapy in the intensive care unit setting. Crit Care 5:189–195

    Article  PubMed  CAS  Google Scholar 

  4. Ambrose PG, Bhavnani SM, Rubino CM et al (2007) Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 44:79–86

    Article  PubMed  CAS  Google Scholar 

  5. Pea F, Viale P (2009) Bench-to-bedside review: appropriate antibiotic therapy in severe sepsis and septic shock–does the dose matter? Crit Care 13:214

    Article  PubMed  Google Scholar 

  6. Kumar A (2009) Optimizing antimicrobial therapy in sepsis and septic shock. Crit Care Clin 25:733–751

    Article  PubMed  CAS  Google Scholar 

  7. Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37:840–851

    Article  PubMed  CAS  Google Scholar 

  8. Figueiredo Costa S (2008) Impact of antimicrobial resistance on the treatment and outcome of patients with sepsis. Shock 30:23–29

    Article  PubMed  Google Scholar 

  9. Lipman J, Boots R (2009) A new paradigm for treating infections: “go hard and go home”. Crit Care Resusc 11:276–281

    PubMed  Google Scholar 

  10. Lodise TP Jr, Lomaestro B, Drusano GL (2007) Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 44(3):357–363

    Article  PubMed  CAS  Google Scholar 

  11. Barbour A, Scaglione F, Derendorf H (2010) Class-dependent relevance of tissue distribution in the interpretation of anti-infective pharmacokinetic/pharmacodynamic indices. Int J Antimicrob Agents 35:431–438

    Article  PubMed  CAS  Google Scholar 

  12. Drawz SM, Bonomo RA (2010) Three decades of beta-lactamase inhibitors. Clin Microbiol Rev 23:160–201

    Article  PubMed  CAS  Google Scholar 

  13. Novelli A, Mini E, Mazzei T (2004) Pharmacological interactions between antibiotics and other drugs in the treatment of lower respiratory tract infections. Eur Respir Mon 28:1–26

    Google Scholar 

  14. Nagaoka I, Hirota S, Niyonsaba F et al (2001) Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. J Immunol 167:3329–3338

    PubMed  CAS  Google Scholar 

  15. Zhang L, Dhillon P, Yan H et al (2000) Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:3317–3321

    Article  PubMed  CAS  Google Scholar 

  16. Tsuzuki H, Tani T, Ueyama H, Kodama M (2001) Lipopolysaccharide: neutralization by polymyxin B shuts down the signaling pathway of nuclear factor kappa B in peripheral blood mononuclear cells, even during activation. J Surg Res 100:127–134

    Article  PubMed  CAS  Google Scholar 

  17. Suárez C, Gudiol F (2009) Beta-lactam antibiotics. Enferm Infecc Microbiol Clin 27(2):116–129 Article in Spanish

    Article  PubMed  Google Scholar 

  18. Augusto LA, Decottignies P, Synguelakis M et al (2003) Histones: a novel class of lipopolysaccharide-binding molecules. Biochemistry 42:3929–3938

    Article  PubMed  CAS  Google Scholar 

  19. Sullivan A, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1:101–114

    Article  PubMed  CAS  Google Scholar 

  20. Klein G (2003) Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int J Food Microbiol 88:123–131

    Article  PubMed  Google Scholar 

  21. Tannock GW (2001) Molecular assessment of intestinal microflora. Am J Clin Nutr 73(Suppl 2):410S–414S

    PubMed  CAS  Google Scholar 

  22. Dunne C (2001) Adaptation of bacteria to the intestinal niche: probiotics and gut disorder. Inflamm Bowel Dis 7:136–145

    Article  PubMed  CAS  Google Scholar 

  23. Brook I (2000) The effects of amoxicillin therapy on skin flora in infants. Pediatr Dermatol 17:360–363

    Article  PubMed  CAS  Google Scholar 

  24. Antonelli M, Mercurio G, Di Nunno S, Recchioni G, Deangelis G (2001) De-escalation antimicrobial chemotherapy in critically ill patients: pros and cons. J Chemother 1:218–223

    Google Scholar 

  25. Doğan O, Gülmez D, Hasçelik G (2010) Effect of new breakpoints proposed by Clinical and Laboratory Standards Institute in 2008 for evaluating penicillin resistance of Streptococcus pneumoniae in a Turkish University Hospital. Microb Drug Resist 16:39–41

    Article  PubMed  Google Scholar 

  26. Feldman C (2004) Clinical relevance of antimicrobial resistance in the management of pneumococcal community-acquired pneumonia. J Lab Clin Med 143:269–283

    Article  PubMed  Google Scholar 

  27. Goosen H (2003) Susceptibility of multi-drug-resistant Pseudomonas aeruginosa in intensive care units: results from the European MYSTIC study group. Clin Microbiol Infect 9:980–983

    Article  Google Scholar 

  28. Kahlmeter G (2008) Breakpoints for intravenously used cephalosporins in Enterobacteriaceae—EUCAST and CLSI breakpoints. Clin Microbiol Infect 14:169–174

    Article  PubMed  CAS  Google Scholar 

  29. Bazan JA, Martin SI, Kaye KM (2009) Newer beta-lactam antibiotics: doripenem, ceftobiprole, ceftaroline, and cefepime. Infect Dis Clin North Am 23:983–996

    Article  PubMed  Google Scholar 

  30. Baughman RP (2009) The use of carbapenems in the treatment of serious infections. J Intensive Care Med 24:230–241

    Article  PubMed  Google Scholar 

  31. Smith CA, Baker EN (2002) Aminoglycoside antibiotic resistance by enzymatic deactivation. Curr Drug Targets Infect Disord 2:143–160

    Article  PubMed  CAS  Google Scholar 

  32. Viale P, Pea F (2003) What is the role of fluoroquinolones in intensive care? J Chemother 15(Suppl 3):5–10

    CAS  Google Scholar 

  33. Blondeau JM (2004) Fluoroquinolones: mechanism of action, classification, and development of resistance. Surv Ophthalmol 49(Suppl 2):S73–S78

    Article  PubMed  Google Scholar 

  34. Labro MT (2004) Macrolide antibiotics: current and future uses. Expert Opin Pharmacother 5:541–550

    Article  PubMed  CAS  Google Scholar 

  35. Ackermann G, Rodloff AC (2003) Drugs of the 21st century: telithromycin (HMR 3647)—the first ketolide. J Antimicrob Chemother 51:497–511

    Article  PubMed  CAS  Google Scholar 

  36. Malabarba A, Ciabatti R (2001) Glycopeptide derivatives. Curr Med Chem 8:1759–1773

    PubMed  CAS  Google Scholar 

  37. Esposito S, Noviello S (2003) What is the role of glycopeptides in intensive care? J Chemother 15(Suppl 3):11–16

    CAS  Google Scholar 

  38. Parenti F, Schito GC, Courvalin P (2000) Teicoplanin chemistry and microbiology. J Chemother 12(Suppl 5):5–14

    PubMed  Google Scholar 

  39. Harding I, Sorgel F (2000) Comparative pharmacokinetics of teicoplanin and vancomycin. J Chemother 12(Suppl 5):15–20

    PubMed  Google Scholar 

  40. Lundstrom TS, Sobel JD (2000) Antibiotics for Gram-positive bacterial infections. Vancomycin, teicoplanin, quinupristin/dalfopristin, and linezolid. Infect Dis Clin North Am 14:463–474

    Article  PubMed  CAS  Google Scholar 

  41. Rocha JL, Kondo W, Baptista MI et al (2002) Uncommon vancomycin-induced side effects. Braz J Infect Dis 6:196–200

    Article  PubMed  Google Scholar 

  42. Beringer P (2001) The clinical use of colistin in patients with cystic fibrosis. Curr Opin Pulm Med 7:434–440

    Article  PubMed  CAS  Google Scholar 

  43. Tsubery H, Ofek I, Cohen S et al (2002) Modulation of the hydrophobic domain of polymyxin B nonapeptide: effect on outer-membrane permeabilization and lipopolysaccharide neutralization. Mol Pharmacol 62:1036–1042

    Article  PubMed  CAS  Google Scholar 

  44. Diekema DJ, Jones RN (2001) Oxazolidinone antibiotics. Lancet 358:1975–1982

    Article  PubMed  CAS  Google Scholar 

  45. Paradisi F, Corti G, Messeri D (2001) Antistaphylococcal (MSSA, MRSA, MSSE, MRSE) antibiotics. Med Clin North Am 85:1–17

    Article  PubMed  CAS  Google Scholar 

  46. De Gaudio AR, Di Filippo A (2003) What is the role of streptogramins in intensive care? J Chemother 15(Suppl 3):17–21

    Google Scholar 

  47. Hershberger E, Donabedian S, Konstantinou K, Zervos MJ (2004) Quinupristin-dalfopristin resistance in Gram-positive bacteria: mechanism of resistance and epidemiology. Clin Infect Dis 38:92–98

    Article  PubMed  CAS  Google Scholar 

  48. Devasahayam G, Scheld WM, Hoffman PS (2010) Newer antibacterial drugs for a new century. Expert Opin Investig Drugs 19:215–234

    Article  PubMed  CAS  Google Scholar 

  49. Zuckerman JM, Qamar F, Bono BR (2009) Macrolides, ketolides, and glycylcyclines: azithromycin, clarithromycin, telithromycin, tigecycline. Infect Dis Clin North Am 23:997–1026

    Article  PubMed  Google Scholar 

  50. Barton E, MacGowan A (2009) Future treatment options for Gram-positive infections–looking ahead. Clin Microbiol Infect 15:17–25

    Article  PubMed  CAS  Google Scholar 

  51. Bouza E (2009) New therapeutic choices for infections caused by methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 15:44–52

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Adembri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Italia

About this chapter

Cite this chapter

De Gaudio, A.R., Rinaldi, S., Adembri, C. (2011). Systemic Antibiotics. In: van Saene, H., Silvestri, L., de la Cal, M., Gullo, A. (eds) Infection Control in the Intensive Care Unit. Springer, Milano. https://doi.org/10.1007/978-88-470-1601-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1601-9_6

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1600-2

  • Online ISBN: 978-88-470-1601-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics