Skip to main content

Pathogen pressure and molecular evolutionary genetics of innate immunity genes in humans

  • Chapter
Nature at Work: Ongoing Saga of Evolution

Abstract

We report results of an extensive and comprehensive study of genetic diversity in 12 genes of the innate immune system in a population of eastern India. Almost half of the 548 DNA variants discovered was novel. DNA sequence comparisons with human and chimpanzee reference sequences revealed evolutionary features indicative of natural selection operating among individuals, who are residents of an area with a high load of microbial and other pathogens. The haplotype structures in India are significantly different from those of European-American and African-American populations, indicating local adaptation to pathogens. Most of the human haplotypes are many mutational steps away from the ancestral (chimpanzee) haplotypes, indicating that humans may have had to adapt to new pathogens. We have tested the opposing views concerning evolution of genes of the innate immune system that (a) being evolutionary ancient, the system may have been highly optimized by natural selection and therefore should be under purifying selection and (b) the system may be plastic and continuing to evolve under balancing selection. We have found that in these genes, there is (a) generally an excess of rare variants (b) high, but variable, degrees of extended haplotype homozygosity, (c) low tolerance to non-synonymous changes and (d) essentially one or a few high-frequency haplotypes, with star-like phylogenies of other infrequent haplotypes radiating from the modal haplotypes. Purifying selection is the most parsimonious explanation operating on these innate immunity genes. This genetic surveillance system recognizes motifs in pathogens that are perhaps conserved across abroad range of pathogens. Hence, functional constraints are imposed on mutations that diminish the ability of these proteins to detect pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Medzhitov R, Janeway CA Jr (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97

    Article  PubMed  CAS  Google Scholar 

  2. Valiante NM, O’Hagan DT, Ulmer JB (2003) Innate immunity and biodefence vaccines. Cellular Microbiol 5:755–760

    Article  CAS  Google Scholar 

  3. Nizet V, Gallo RL (2003) Cathelicidins and innate defense against invasive bacterial infection. Scand J Infect Dis 35:670–676

    Article  PubMed  CAS  Google Scholar 

  4. Ramanathan B, Davis EG, Ross CR, Blecha F (2002) Cathelicidins: microbicidal activity mechanisms of action and roles in innate immunity. Microbes Infect 4:361–372

    Article  PubMed  CAS  Google Scholar 

  5. Ganz T, Lehrer RI (1998) Antimicrobial peptides of vertebrates. Curr Opin Immunol 10:41–44

    Article  PubMed  CAS  Google Scholar 

  6. Ganz T, Lehrer RI (1994) Defensins. Curr Opin Immunol 6:584–589

    Article  PubMed  CAS  Google Scholar 

  7. Garred P, Larsen F, Seyfarth J, Fujita R, Madsen HO (2006) Mannose-binding lectin and its genetic variants. Genes Immun 7:85–94

    Article  PubMed  CAS  Google Scholar 

  8. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Ann Rev Immunol 21:335–376

    Article  CAS  Google Scholar 

  9. Haldane JBS (1949) Disease and evolution. Ric Sci Suppl A 19:68–76

    Google Scholar 

  10. Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170

    Article  PubMed  CAS  Google Scholar 

  11. Parham P (2003) The unsung heroes. Nature 423:20h

    Article  Google Scholar 

  12. Tomasinsig L, Zanetti M (2005) The cathelicidins — structure function and evolution. Curr Prot Pep Sci 6:23–34

    Article  CAS  Google Scholar 

  13. Verdu P, Barreiro LB, Patin E, Gessain A, Cassar O, Kidd JR, Kidd KK, Behar DM, Froment A, Heyer E, Sica L, Casanova J-L, Abel L, Quintana-Murci L (2006) Evolutionary insights into the high worldwide prevalence of MBL2 deficiency alleles. Hum Mol Genet 15:2650–2658

    Article  PubMed  CAS  Google Scholar 

  14. Ferwerda B, McCall MBB, Alonso S, Giamarellos-Bourboulis EJ, Mouktaroudi M, Izagirre N, Syafruddin D, Kibiki G, Cristea T, Hijmans A, Hamann L, Israel S, ElGhazali G, Troye-Blomberg M, Kumpf O, Maiga B, Dolo A, Dounbo O, Hermsen CC, Stalenhoef AFH, van Crevel R, Brunner HG, Oh DY, Schumann RR, de la Rua C, Sauerwein R, Kullberg BJ, van der Ven AJAM, van der Meer JWM, Netea MG (2007) TLR4 polymorphisms infectious diseases and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci USA 104:16645–16650

    Article  PubMed  Google Scholar 

  15. Ferrer-Admetlla A, Bosch E, Sikora M, Marques-Bonet T, Ramirez-Soriano A, Muntasell A, Navarro A, Lazarus R, Calafell F, Bertranpetit J, Casals F (2008) Balancing selection is the main force shaping the evolution of innate immunity genes. J Immunol 181:1315–1322

    PubMed  CAS  Google Scholar 

  16. Bairagya B, Bhattacharya P, Bhattacharya SK, Dey B, Dey U, Ghosh T, Maiti S, Majumder PP, Mishra K, Mukherjee S, Mukherjee S, Narayanasamy K, Poddar S, Sarkar Roy N, Sengupta P, Sharma S, Sur D, Sutradhar D, Wagener DK (2008) Genetic Variation and Haplotype Stuctures of Innate Immunity Genes in Eastern India. Infec Genet Evolu 8:360–366

    Google Scholar 

  17. Watterson GA, Guess HA (1977) Is the most frequent allele the oldest? Theor Popul Biol 11:141–160

    Article  PubMed  CAS  Google Scholar 

  18. Hacia JG, Fan JB, Ryder O, Jin L, Edgemon K, Ghandour G, Mayer RA, Sun B, Hsie L, Robbins CM, Brody LC, Wang D, Lander ES, Lipshutz R, Fodor SP, Collins FS (1999) Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays. Nat Genet 22:164–167

    Article  PubMed  CAS  Google Scholar 

  19. Nuytinck L, Shapiro F (2004) Mannose-binding lectin: laying the stepping stones from clinical research to personalized medicine. Personalized Med 1:35–52

    Article  CAS  Google Scholar 

  20. Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics 8:124

    Article  PubMed  Google Scholar 

  21. Mukherjee S, Sarkar-Roy N, Wagener DK, Majumder PP (2009) Signatures of natural selection are not uniform across genes of innate immune system, but purifying selection is the dominant signature. Proc Natl Acad Sci USA 106:7073–7078

    Article  PubMed  Google Scholar 

  22. Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978

    PubMed  CAS  Google Scholar 

  23. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    PubMed  CAS  Google Scholar 

  24. Tanaka T, Nei M (1989) Positive Darwinian selection observed at the variable-region genes of immunoglobulins. Mol Biol Evol 6:447–459

    PubMed  CAS  Google Scholar 

  25. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  26. Sachidanandam R, et al. (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Article  PubMed  CAS  Google Scholar 

  27. Miller RD, Phillips MS, Jo I, Donaldson MA, Studebaker JF, Addleman N, Steven Alfisi V, Ankener WM, Bhatti HA, Callahan CE, Carey BJ, Conley CL, Cyr JM (2005) High-density single-nucleotide polymorphism maps of the human genome. Genomics 86:117–126

    Google Scholar 

  28. The International HapMap Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  Google Scholar 

  29. Balasubramanian S, Harrison P, Hegyi H, Bertone P, Luscombe N, Echols N, McGarvey P, Zhang Z, Gerstein M (2002) SNPs on human chromosomes 21 and 22 — analysis in terms of protein features and pseudogenes. Pharmacogenomics 3:393–402

    Article  PubMed  CAS  Google Scholar 

  30. Jiggins FM, Hurst GDD (2003) The evolution of parasite recognition genes in the innate immune system: Purifying selection on Drosophila melanogaster peptidoglycan recognition proteins. J Mol Evol 57:598–605

    Article  PubMed  CAS  Google Scholar 

  31. Little T, Colbourne J, Crease T (2003) Molecular evolution of Daphnia immunity genes: Polymorphism in a Gram-negative binding protein gene and an α-2-macroglobulin gene. J Mol Evol 2004 59:498–506

    Article  PubMed  CAS  Google Scholar 

  32. Smirnova I, Hamblin MT, McBride C, Beutler B, Di Rienzo A (2001) Excess of rare amino acid polymorphisms in the Toll-like receptor 4 in humans. Genetics 158:1657–1664

    Google Scholar 

  33. Tapping RI, Omueti KO, Johnson CM (2007) Genetic polymorphisms within the human Toll-like receptor 2 subfamily. Biochem Soc Trans 35:1445–1448

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 The National Academy of Sciences, India

About this chapter

Cite this chapter

Majumder, P.P. (2010). Pathogen pressure and molecular evolutionary genetics of innate immunity genes in humans. In: Sharma, V.P. (eds) Nature at Work: Ongoing Saga of Evolution. Springer, New Delhi. https://doi.org/10.1007/978-81-8489-992-4_16

Download citation

Publish with us

Policies and ethics