Skip to main content

Biofortification Through Breeding Interventions in Lentil

  • Chapter
  • First Online:
Biofortification of Food Crops

Abstract

Micronutrient deficiency affects more than two billion population worldwide especially in sub-Saharan Africa and South Asia. The deficiency in human body is commonly described as “hidden hunger” leading to a range of health hazards including low birth weight, anemia, learning disabilities, increased morbidity and mortality rates, and high health-care costs. Biofortification of food crop varieties with essential micronutrients is one of the potential means to address micronutrient deficiencies through crop breeding techniques. Grain legumes constitute the prime source of vegetarian diet in the developing world. Among grain legumes, lentil is a rich source of protein and other minerals including iron, zinc, selenium, folates, carotenoids, and vitamins. A wide range of genetic variability has been reported among the lentil germplasm with regard to nutrient-related traits. Therefore, lentil has been identified an ideal crop for micronutrient biofortification and a possible whole food solution to the global micronutrient malnutrition. Here, we discuss the current status of breeding interventions in nutritional enhancement of lentil varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo S, Ladizinsky G (1991) Anatomical aspects of hybrid embryo abortion in the genus Lens L. Bot Gaz 152:316–320

    Article  Google Scholar 

  • Abbo S, Ladizinsky G (1994) Genetical aspects of hybrid embryo abortion in the genus Lens L. Heredity 72:193–200

    Article  Google Scholar 

  • Ahmad M, Fautrier AG, McNeil DL, Burritt DJ, Hill GD (1995) Attempts to overcome post-fertilization barrier in interspecific crosses of the genus Lens. Plant Breed 114:558–560

    Article  Google Scholar 

  • Batra J, Seth PK (2002) Effect of iron deficiency on developing rat brain. Indian J Clin Biochem 17:108–114

    Article  CAS  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403e411

    Article  Google Scholar 

  • Cakmak I, Ozkan H, Braun H-J, Welch RM, Romheld V (2000) Zinc and iron concentrations in seeds of wild primitive and modern wheats. Food Nutr Bull 21:e401–e403

    Article  Google Scholar 

  • Cohen D, Ladizinsky G, Ziv M, Muehlbauer FJ (1984) Rescue of interspecific Lens hybrids by means of embryo culture. Plant Cell Tissue Org 3:343–347

    Article  CAS  Google Scholar 

  • Collard BCY, Ades PK, Pang ECK, Brouwer JB, Taylor PWJ (2001) Prospecting for sources of resistance to ascochyta blight in wild Cicer species. Australas Plant Path 30:271–276

    Article  Google Scholar 

  • Cubero JI, Perez de la Vega M, Fratini R (2009) Origin phylogeny domestication and spread. In: Erskine W, Muehlbauer FJ, Sarker BS (eds) The lentil: botany production and uses. CABI Oxfordshire, UK, pp 13–33

    Chapter  Google Scholar 

  • Doyle JJ (1988) 5S ribosomal gene variation in the soybean and its progenitor. Theor Appl Genet 75:621–624

    Article  CAS  Google Scholar 

  • Eruvbetine D (2003) Canine nutrition and health. A paper presented at the seminar organized by Kensington Pharmaceuticals Nig Ltd Lagos. Accessed 21 Aug 2003

    Google Scholar 

  • FAO (1996) State of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization, Rome, p 131

    Google Scholar 

  • FAOSTAT (2011) http://faostat.fao.org//. Accessed 14 Mar 2015

  • Fratini R, Ruiz ML (2006) Interspecific hybridization in the genus Lens applying in vitro embryo rescue. Euphytica 150:271–280

    Article  CAS  Google Scholar 

  • Fratini R, Ruiz ML, Perez de la Vega M (2004) Intra-specific and inter-sub-specific crossing in lentil (Lens culinaris Medik). Can J Plant Pathol 84:981–986

    Google Scholar 

  • Gomez-Becerra HF, Yazici A, Ozturk L, Budak H, Peleg Z, Morgounov A, Fahima T, Saranga Y, Cakmak I (2010) Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica 171:39–52

    Article  CAS  Google Scholar 

  • Goshen D, Ladizinsky G, Muehlbauer FJ (1982) Restoration of meiotic regularity and fertility among derivatives of Lens culinaris × L nigricans hybrids. Euphytica 31:795–799

    Article  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H, Graham RD (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386

    Article  Google Scholar 

  • Gupta D, Sharma SK (2005) Embryo-ovule rescue technique for overcoming post-fertilization barriers in interspecific crosses of Lens. J Lentil Res 2:27–30

    Google Scholar 

  • Gupta DS, Thavarajah D, Knutson P, Thavarajah P, McGee RJ, Coyne CJ, Kumar S (2013) Lentils (Lens culinaris L) a rich source of folates. J Agric Food Chem 61:7794–7799

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hawkes JG (1977) The importance of wild germplasm in plant breeding. Euphytica 26:615–621

    Article  Google Scholar 

  • Hotz C, Brown KH, Rivera JA et al (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:S94–S204

    Article  Google Scholar 

  • ICARDA (2012) Biofortified lentils to enhance nutritional security in South Asia. ICARDA-South Asia and China regional program, New Delhi, p 2

    Google Scholar 

  • Johnson C, Thavarajah D, Thavarajah P (2013) The influence of phenolic and phytic acid food matrix factors on iron bioavailability potential in 10 commercial lentil genotypes (Lens culinaris L). J Food Compos Anal. 31:82–86

    Google Scholar 

  • Khan MA, Fuller MP, Baloch FS (2008) Effect of soil applied zinc sulphate on wheat (Triticum aestivum L) grown on a calcareous soil in Pakistan. Cereal Res Commun 36:571–582

    Article  CAS  Google Scholar 

  • Knott DR, Dvorak J (1976) Alien germplasm as a source of resistance to diseases. Annu Rev Phytopathol 14:211–235

    Article  Google Scholar 

  • Kotecha PV (2008) Micronutrient malnutrition in India: let us say “no” to it now. Indian J Community Med 33:9–10

    Article  Google Scholar 

  • Ladizinsky G (1979) The origin of lentil and its wild gene pool. Euphytica 28:179–187

    Article  Google Scholar 

  • Ladizinsky G (1993) Wild lentils. Criti Rev Plant Sci 12:169–184

    Article  Google Scholar 

  • Ladizinsky G (1999) Identification of the lentil’s wild genetic stock. Genet Resour Crop Evol 46:115–118

    Article  Google Scholar 

  • Ladizinsky G, Abbo S (1993) Cryptic speciation in Lens culinaris. Genet Resour Crop Evol 40:1–5

    Article  Google Scholar 

  • Ladizinsky G, Braun D, Goshen D, Muehlbauer FJ (1984) The biological species of the genus Lens L. Bot Gaz 145:253–261

    Article  Google Scholar 

  • Ladizinsky G, Cohen D, Muehlbauer FJ (1985) Hybridization in the genus Lens by means of embryo culture. Theor Appl Genet 70:97–101

    Article  CAS  Google Scholar 

  • Ladizinsky G, Pickersgill B, Yamamoto K (1988) Exploitation of wild relatives of the food legumes. In: Summerfield RJ (ed) World crops cool season food legumes. Kluwer, Dordrecht, pp 967–987

    Chapter  Google Scholar 

  • Mallikarjuna N, Jadhav D, Reddy P (2006) Introgression of Cajanus platycarpus genome into cultivated pigeon pea C. cajan. Euphytica 149:161–167

    Article  CAS  Google Scholar 

  • Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21:393e396

    Article  Google Scholar 

  • Muehlbauer FJ, McPhee KE (2005) Lentil (Lens culinaris Medik). In: Singh RJ, Jauhar PP (eds) Genetic resources chromosome engineering and crop improvement grain legumes. Taylor & Francis, Boca Raton, pp 219–230

    Google Scholar 

  • Muehlbauer FJ, Cho S, Sarker A, McPhee KE, Coyne CJ, Rajesh PN, Ford R (2006) Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147:149–165

    Article  Google Scholar 

  • Murray RK, Granner DK, Mayes PA, Rodwell VW (2000) Harper’s biochemistry, 25th edn. McGraw-Hill Health Profession Division, USA pp. 780–786

    Google Scholar 

  • Ortiz-Monasterio I, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Pena RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293e307

    Article  Google Scholar 

  • Ortiz-Monasterio I, Trethowan R, Holm PB, Cakmak I, Borg S, Tauris BEB, Brinch-Pedersen H (2011) Breeding transformation and physiological strategies for the development of wheat with high zinc and iron grain concentration. In: Bonjean AP, Angus WJ, Van Ginkel M (eds) The world wheat book: a history of wheat breeding, vol 2., pp 951–977

    Google Scholar 

  • Oury FX, Leenhardt F, Rémésy C, Chanliaud E, Duperrier B, Balfouriera F, Charmet G (2006) Genetic variability and stability of grain magnesium zinc and iron concentration in bread wheat. Eur J Agron 25:177–185

    Article  CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G et al (2005) A new version of golden rice with increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  CAS  Google Scholar 

  • Plucknett DL, Smith NJH, Williams JT, Anishetty NM (1987) Gene banks and the world’s food. Princeton University Press, New Jersey

    Google Scholar 

  • Prescott-Allen C, Prescott-Allen R (1986) The first resource: wild species in the north American economy. Yale University, New Haven

    Google Scholar 

  • Prescott-Allen C, Prescott-Allen R (1988) Genes from the wild: using wild genetic resources for food and raw materials. International Institute for Environment and Development, London

    Google Scholar 

  • Rahman MM, Erskine W, Siddique KHM, Thavarajah P, Thavarajah D, Zaman MS, Materne MA, Mcmurray LM (2014) Selenium biofortification of lentil in Australia and Bangladesh. In: 6th international food legume research conference, TCU Place, Sakatoon, 7–11 July 2014

    Google Scholar 

  • Stalker HT (1980) Utilization of wild species for crop improvement. Adv Agron 33:111–147

    Article  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  Google Scholar 

  • Thavarajah D, Thavarajah P, Wejesuriya A, Rutzke M, Glahn RP, Combs GF Jr, Vandenberg A (2011) The potential of lentil (Lens culinaris L) as a whole food for increased selenium iron and zinc intake: preliminary results from a 3 year study. Euphytica 180:123–128

    Article  CAS  Google Scholar 

  • Trethowan RM (2007) Breeding wheat for high iron and zinc at CIMMYT: state of the art challenges and future prospects. In: Proceedings of the 7th international wheat conference, Mar del Plata

    Google Scholar 

  • Tullu A, Buchwaldt L, Lulsdorf M, Banniza S, Barlow B, Slinkard AE, Sarker A, Tar’an TD, Warkentin TD, Vandenberg A (2006) Sources of resistance to anthracnose (Colletotrichum truncatum) in wild Lens species. Genet Resour Crop Evol 53:111–119

    Article  CAS  Google Scholar 

  • Velu G, Singh RP, Huerta-Espino J, Peña-Bautista RJ, Arun B, Mahendru-Singh A et al (2012) Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crop Res 137:261–267

    Article  Google Scholar 

  • Welch MR, Graham DR (1999) A new paradigm for world agriculture: meeting human needs productive sustainable nutritious. Field Crop Res 60:1–10

    Article  Google Scholar 

  • Welch RM (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutr 132:495S–499S

    Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:588–593

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Kumar, J., Kant, R., Quatadah, S.M., Kumar, S., Sarker, A. (2016). Biofortification Through Breeding Interventions in Lentil. In: Singh, U., Praharaj, C., Singh, S., Singh, N. (eds) Biofortification of Food Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2716-8_12

Download citation

Publish with us

Policies and ethics