Skip to main content

Abstract

Proline accumulation occurs in a wide range of plant species in response to various kinds of environmental stresses. A large body of evidence suggests that a positive correlation occurs between proline accumulation and plant stress tolerance. In this chapter, we will discuss the metabolism of proline accumulation and its role in stress tolerance in plants. Existing literature indicates that despite acting as an osmolyte, proline also plays important roles during stress as a metal chelator and an antioxidative defence molecule. Moreover, when applied exogenously at low concentrations, proline enhanced stress tolerance in plants. However, some reports point out adverse effects of proline when applied at higher doses. Role of proline in seed germination, flowering and other developmental programmes is also presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams E, Frank L (1980) Metabolism of proline and the hydroxyprolines. Annu Rev Biochem 49:1005–1061

    Article  CAS  PubMed  Google Scholar 

  • Ahmad I, Wainwright SJ, Stewart GR (1981) The solute and water relations of Agrostis stolonifera ecotypes differing in their salt tolerance. New Phytol 87:615–629

    Article  CAS  Google Scholar 

  • Ali Q, Ashraf M, Athar HUR (2007) Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pak J Bot 39:1133–1144

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Armengaud P, Thiery L, Buhot N, Grenier-De March G, Savouré A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120:442–450

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Atkinson DE (1977) Cellular energy metabolism and its regulation. Academic, New York

    Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Brown LM, Hellebust JA (1978) Sorbitol and proline as intracellular osmotic solutes in the green alga Stichococcus bacillaris. Can J Bot 56:676–679

    Article  CAS  Google Scholar 

  • Burton RS (1991) Regulation of proline synthesis in osmotic response: effects of protein synthesis inhibitors. J Exp Zool 259:272–277

    Article  CAS  Google Scholar 

  • Chaves MM et al (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiang H-H, Dandekar AM (1995) Regulation of proline accumulation in Arabidopsis thaliana (L) Heynh. during development and in response to desiccation. Plant Cell Environ 18:1280–1290

    Article  CAS  Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    Article  CAS  PubMed  Google Scholar 

  • Choudhary NL, Sairam RK, Tyagi A (2005) Expression of Δ1-pyrroline-5- carboxylate synthetase gene during drought in rice (Oryza sativa L.). Indian J Biochem Biophys 42:366–370

    CAS  PubMed  Google Scholar 

  • Chung JS, Zhu JK, Bressan RA, Hasegawa PM, Shi H (2008) Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis. Plant J 53:554–565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606

    Article  CAS  PubMed  Google Scholar 

  • De Knecht JA, Van Dillen M, Koevoets PLM, Schat H, Verkleij JAC, Ernst WHO (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiol 104:255–261

    PubMed Central  PubMed  Google Scholar 

  • De Ronde JAD, Cress WA, Kruger GHJ, Strasser RJ, Staden JV (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224

    Article  PubMed  CAS  Google Scholar 

  • de-Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JT (2003) Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot 49:107–120

    Article  CAS  Google Scholar 

  • Delanauney AJ, Verma DPS (1993) Proline biosynthesis and osmo-regulation in plants. Plant J 4:215–223

    Article  Google Scholar 

  • Deuschle K, Funck D, Hellmann H, Däschner K, Binder S, Frommer WB (2001) A nuclear gene encoding mitochondrial delta 1-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Plant J 27:345–356

    Article  CAS  PubMed  Google Scholar 

  • Doke N (1997) The oxidative burst: role in signal transduction and plant stress. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Press, New York, pp 785–813

    Google Scholar 

  • Ehsanpour AA, Fatahian N (2003) Effects of salt and proline on Medicago sativa callus. Plant Cell Tiss Org Cult 73:53–56

    Article  CAS  Google Scholar 

  • Fabro G, Kovacs I, Pavet V, Szabados L, Alvarez ME (2004) Proline accumulation and AtP5CS2 gene activation are induced plant pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe Interact 17:343–350

    Article  CAS  PubMed  Google Scholar 

  • Farago ME, Mullen WA (1979) Plants which accumulate metals. Part IV. A possible copper-proline complex from the roots of Armeria maritima. Inorg Chim Acta 32:L93–L94

    Article  CAS  Google Scholar 

  • Fougere F, Le-Rudulier D, Streeter JG (1991) Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol 96:1228–1236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita T, Maggio A, García-Ríos M, Bressan RA, Csonka LN (1998) Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for D1-pyrroline- 5-carboxylate synthetase from tomato. Plant Physiol 118:661–674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gangopadhyay G, Basu S, Gupta S (1997) In vitro selection and physiological characterization of NaCl and mannitol-adapted callus lines in Brassica juncea. Plant Cell Tiss Org Cult 50:161–169

    Article  CAS  Google Scholar 

  • Hamilton EW 3rd, Heckathorn SA (2001) Mitochondrial adaptations to NaCl complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Staden JV (2002) Disruptive effects of exogenous proline on chloroplast and mitochondrial ultrastructure in Arabidopsis leaves. S Afr J Bot 68:393–396

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, van Staden J (2003) A regulatory role for proline metabolism in stimulating Arabidopsis thaliana seed germination. Plant Growth Regul 39:41–50

    Article  CAS  Google Scholar 

  • Haudecoeur E, Planamente S, Cirou A, Tannieres M, Shelp BJ, Morera S, Faure D (2009) Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 106:14587–14592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hellmann H, Funk D, Rentsch D, Frommer WB (2000) Hypersensitivity of an Arabidopsis sugar signaling mutant towards exogenous proline application. Plant Physiol 123:779–790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoque MA, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y (2008) Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol 165:813–824

    Article  CAS  PubMed  Google Scholar 

  • Hsu SY, Hsu YT, Kao CH (2003) The effect of polyethylene glycol on proline accumulation in rice leaves. Biol Plant 46:73–78

    Article  CAS  Google Scholar 

  • Hua B, Guo WY (2002) Effect of exogenous proline on SOD and POD activity of soybean callus under salt stress. Acta Agric Boreali Sinica 17:37–40

    Google Scholar 

  • Hur J, Jung KH, Lee CH, An G (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167:417–426

    Article  CAS  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y (2010) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597

    Article  CAS  Google Scholar 

  • Kaneshiro ES, Holz GG Jr, Dunham PB (1969) Osmoregulation in a marine ciliate, Miamiensis avidus. II. Regulation of intracellular free amino acids. Biol Bull 137:161–169

    Article  CAS  PubMed  Google Scholar 

  • Kaul S, Sharma SS, Mehta IK (2008) Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids 34:315–320

    Article  CAS  PubMed  Google Scholar 

  • Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8:1323–1335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krishna RV, Leisinger T (1979) Biosynthesis of proline in Pseudomonas aeruginosa. Partial purification and characterization of gamma-glutamyl kinase. Biochem J 181:215–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar V, Sharma DR (1989) Effect of exogenous proline on growth and ion content in NaCl stressed and nonstressed cells of mung bean, Vigna radiata var. radiata. Indian J Exp Biol 27:813–815

    CAS  Google Scholar 

  • Lehmann S, Funck D, Szabados L, Rentsch D (2010) Proline metabolism and transport in plant development. Amino Acids 39:949–962

    Article  CAS  PubMed  Google Scholar 

  • Leisinger T (1987) Biosynthesis of proline in Escherichia coli and Salmonella typhimurium. In: Neidhart FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Cellular and molecular biology. American Society for Microbiology, Washington, DC, pp 345–351

    Google Scholar 

  • Low PS (1985) Molecular basis of the biological compatibility of nature’s osmolytes. In: Gilles R, Gilles-Baillien M (eds) Transport processes, iono- and osmoregulation. Springer, Berlin, pp 469–477

    Chapter  Google Scholar 

  • Lutts S, Majerus V, Kinet J-M (1999) NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol Plant 105:450–458

    Article  CAS  Google Scholar 

  • Madan S, Nainawatee HS, Jain RK, Chowdhury JB (1995) Proline and proline metabolising enzymes in in-vitro selected NaCl-tolerant Brassica juncea L. under salt stress. Ann Bot (Lond) 76:51–57

    Article  CAS  Google Scholar 

  • Majewska-Sawka A, Nothnagel EA (2000) The multiple roles of arabinogalactan proteins in plant development. Plant Physiol 122:3–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mattioli R, Marchese D, D’Angeli S, Altamura MM, Costantino P, Trovato M (2008) Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol 66:277–288

    Article  CAS  PubMed  Google Scholar 

  • Mattioli R, Falasca G, Sabatini S, Costantino P, Altamura MM, Trovato M (2009) The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiol Plant 137:72–85

    Article  CAS  PubMed  Google Scholar 

  • Mattioli R, Biancucci M, Lonoce C, Costantino P, Trovato M (2012) Proline is required for male gametophyte development in Arabidopsis. BMC Plant Biol 12:236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mauro ML, Trovato M, De Paolis A, Gallelli A, Costantino P, Altamura MM (1996) The plant oncogene rolD stimulates flowering in transgenic tobacco plants. Dev Biol 180:693–700

    Article  CAS  PubMed  Google Scholar 

  • Micheu S, Crailsheim K, Leonhard B (2000) Importance of proline and other amino acids during honeybee flight (Apis mellifera carnica POLLMANN). Amino Acids 18:157–175

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling delta1-pyrroline-5-carboxylateproline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding proline dehydrogenase is not only induced by proline and hypo osmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Plant Physiol 118:1233–1241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tukaya H et al (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis. Plant J 18:185–193

    Article  CAS  PubMed  Google Scholar 

  • Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K (2003) Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol 44:541–548

    Article  CAS  PubMed  Google Scholar 

  • Nayyar H, Walia DP (2003) Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biol Plant 46:275–279

    Article  CAS  Google Scholar 

  • Okuma E, Soeda K, Tada M, Murata Y (2000) Exogenous proline mitigates the inhibition of growth of Nicotiana tabacum cultured cells under saline conditions. Soil Sci Plant Nutr 46:257–263

    Article  CAS  Google Scholar 

  • Peng Z, Lu Q, Verma DP (1996) Reciprocal regulation of delta-1- pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet 253:334–341

    CAS  PubMed  Google Scholar 

  • Petrusa LM, Winicov I (1997) Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol Biochem 35:303–310

    CAS  Google Scholar 

  • Piqueras A, Hernandez JM, Olmos E, Hellin E, Sevilla F (1996) Changes in antioxidant enzymes and organic solutes associated with adaptation of citrus cells to salt stress. Plant Cell Tiss Org Cult 45:53–60

    Article  CAS  Google Scholar 

  • Poulin R, Larochelle J, Hellebust JA (1987) The regulation of amino acid metabolism during hyperosmotic stress in Acanthamoeba castellanii. J Exp Zool 243:365–378

    Article  CAS  Google Scholar 

  • Rehman F, Khan FA, Anis SB (2014) Assessment of aphid infestation levels in some cultivars of mustard with varying defensive traits. Arch Phytopathol Plant Protect 47:1866–1874

    Article  Google Scholar 

  • Ribarits A, Abdullaev A, Tashpulatov A, Richter A, Heberle-Bors E, Touraev A (2007) Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. Planta 225:1313–1324

    Article  CAS  PubMed  Google Scholar 

  • Roosens NH, Thu TT, Iskandar HM, Jacobs M (1998) Isolation of the ornithine-delta-amino transferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol 117:263–271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roy D, Basu N, Bhunia A, Banerjee SK (1993) Counteraction of exogenous l-proline with NaCl in salt-sensitive cultivar of rice. Biol Plant 35:69–72

    Article  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer S, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Saradhi P, Alia P, Arora S, Prasad KV (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209:1–5

    Article  CAS  PubMed  Google Scholar 

  • Savoure A, Jaoua S, Hua X-E, Ardiles W, Van Montagu M, Verbruggen N (1995) Isolation, characterization, and chromosomal location of a gene encoding the delta 1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett 372:13–19

    Article  CAS  PubMed  Google Scholar 

  • Schat H, Sharma SS, Vooijs R (1997) Heavy metal induced accumulation of free proline in a metal tolerant and a non tolerant ecotype of Silene vulgaris. Physiol Plant 101:477–482

    Article  CAS  Google Scholar 

  • Schmidt R, Stransky H, Koch W (2007) The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana. Planta 226:805–813

    Article  CAS  PubMed  Google Scholar 

  • Schwacke R, Grallath S, Breitkreuz KE, Stransky H, Frommer WB, Rentsch D (1999) LeProT1, a transporter for proline, glycine betaine, and γ -amino butyric acid in tomato pollen. Plant Cell 11:377–391

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sekhar PN, Amrutha RN, Sangam S, Verma DP, Kishor PB (2007) Biochemical characterization, homology modelling and docking studies of ornithine delta aminotransferase- an important enzyme in proline biosynthesis of plants. J Mol Graph Model 26:709–719

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Schat H, Vooijs R (1998) In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 1998(49):1531–1535

    Article  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci Lett U S A 97:6896–6901

    Article  CAS  Google Scholar 

  • Siripornadulsil S, Train S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snowalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    Article  Google Scholar 

  • Spollen WG, Tao W, Valliyodan B, Chen K, Hejlek LG, Kim JJ, Noble ME, Zhu J, Bohnert HJ, Henderson D, Schachtman DP, Davis GE et al (2008) Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential. BMC Plant Biol 8:1–32

    Article  CAS  Google Scholar 

  • Sreedevi S, Remani KN, Benjamin S (2013) Biotic stress induced biochemical and isozyme variations in ginger and tomato by Ralstonia solanacearum. Am J Plant Sci 4:1601–1610

    Article  CAS  Google Scholar 

  • Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Székely G, Ábrahám E, Cséplő A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F et al (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  PubMed  CAS  Google Scholar 

  • Tripathi BN, Gaur JP (2004) Relationship between copper and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 219:397–404

    Article  CAS  PubMed  Google Scholar 

  • Trovato M, Maras B, Linhares F, Costantino P (2001) The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Proc Natl Acad Sci U S A 98:13449–13453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei 19:325–346

    Article  Google Scholar 

  • Venekamp JH, Koot JTM (1984) The distribution of free amino acids, especially of proline, in the organs of field bean plants. Vicia faba L., during development in the field. J Plant Physiol 116:343–349

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Villarroel R, Van Montagu M (1993) Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 103:771–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hua XJ, May M, Van Montagu M (1996) Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proc Natl Acad Sci U S A 93:8787–8791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8, e0140

    Article  PubMed Central  PubMed  Google Scholar 

  • Voetberg GS, Sharp RE (1991) Growth of the maize primary root tip at low water potentials. III. Role of increased proline deposition in osmotic adjustment. Plant Physiol 96:1125–1130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J, Yin H, Li X (2009) Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep 28:325–333

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Gang LZ, Zhao CY, Guo WY (2000) Effects of exogenous proline on the physiology of soybean plantlets regenerated from embryos in vitro and on the ultrastructure of their mitochondria under NaCl stress. Soybean Sci 19:314–319

    Google Scholar 

  • Yancey PH (1994) Compatible and counteracting solutes. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 81–109

    Google Scholar 

  • Yoshiba Y et al (1995) Correlation between the induction of a gene for D1- pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–776

    Article  CAS  PubMed  Google Scholar 

  • Zhang HQ, Croes A, Linskens H (1982) Protein synthesis in germinating pollen of Petunia: role of proline. Planta 154:199–203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudasir Irfan Dar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Dar, M.I., Naikoo, M.I., Rehman, F., Naushin, F., Khan, F.A. (2016). Proline Accumulation in Plants: Roles in Stress Tolerance and Plant Development. In: Iqbal, N., Nazar, R., A. Khan, N. (eds) Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2616-1_9

Download citation

Publish with us

Policies and ethics