Skip to main content

Polyamines: Osmoprotectants in Plant Abiotic Stress Adaptation

  • Chapter

Abstract

Environmental stress is one of the major threats affecting the living world. The most crucial function of plant is to induce different regulatory self-defence pathways in response to stress. Abiotic stresses such as drought, high temperature and salinity cause rapid depletion of cellular water leading to loss of crops and agricultural productivity worldwide. On exposure to these prevalent stresses, plant accumulates several polyhydroxylic compounds and zwitterionic alkylamines commonly known as osmolytes or compatible solutes. These are low molecular weight water soluble compounds providing stress tolerance when accumulated without hindering cellular mechanisms. Genes involved in the biosynthetic pathways of different osmolytes have been identified from various sources. Genetic engineering utilising these endogenous genes has resulted in development of transgenic varieties with better adaptability towards stress. Polyamines are ubiquitous biogenic amines that have been implicated in diverse cellular functions. The protective role of plant polyamines as osmolytes is still controversial and needs further investigation. However, there are some reports that suggest functional similarities between polyamines and other osmolytes commonly found in plant defence mechanism. Functions include protection of macromolecules, cellular pH maintenance, ROS scavenging, stabilisation of native protein structure, etc. Apart from these direct functions, exogenous application of polyamines results in the elevation of endogenous level of different osmolytes. Thus, polyamines play an indirect role in plant abiotic stress tolerance by participating in osmolyte synthesis in response to stress. In this review, we have dissected the role of polyamines as osmoprotectants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abebe T, Arron C, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abraham E, Rigo G, Szekely G, Nagy R, Konez C, Szabados L (2003) Light dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteriods in Arabidopsis. Plant Mol Biol 51:363–372

    Article  CAS  PubMed  Google Scholar 

  • Adams P, Thomas JC, Vernon DM, Bohnert HJ, Jensen RG (1992) Distinct cellular and organismic responses to salt stress. Plant Cell Physiol 33:1215–1223

    CAS  Google Scholar 

  • Afzal I, Munir F, Ayub CM, Basra SMA, Hameed A, Nawaz A (2009) Changes in antioxidant enzymes, germination capacity and vigour of tomato seeds in response of priming with polyamines. Seed Sci Technol 37:765–770

    Article  Google Scholar 

  • Agboma PC, Peltonen-Sainio P, Hinkkanen R, Pehu E (1997a) Effect of foliar application of glycine betaine on yield components of drought-stressed tobacco plant. Explementary Agric 33:345–352

    Article  CAS  Google Scholar 

  • Agboma PC, Sinclair TR, Jokinen K, Peltonen-Sainio P, Pehu E (1997b) An evaluation of the effect of exogenous glycine betaine on the growth and yield of soybean: timing of application, watering regimes and cultivars. Field Crops Res 54:51–64

    Article  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of Enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    Article  CAS  PubMed  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A (2010a) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrian M, Tiburcio AF, Altabella T (2010b) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants overexpressing the homologous arginine decarboxylase 2 gene. Plant Physiol Biochem 48:547–552

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Alet AI, Sanchez DH, Cuevas JC, Marina M, Carrasco P, Altabella T, Tiburcio AF, Ruiz OA (2012) New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Sci 182:94–100

    Article  CAS  PubMed  Google Scholar 

  • Ali RM (2000) Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Sci 152:173–179

    Article  CAS  Google Scholar 

  • Alia PS, Mohanty P (1991) Proline enhances primary photochemical activities in isolated thylakoid membranes of Brassica juncea by arresting photoinhibitory damage. Biochem Biophys Res Commun 181:1238–1244

    Article  CAS  PubMed  Google Scholar 

  • Alia PS, Mohanty P (1997) Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J Photochem Photobiol 38:253–257

    Article  CAS  Google Scholar 

  • Armengaud P (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120:442–450

    Article  CAS  PubMed  Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136:2556–2576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defence systems in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aziz A, Martin-Tanguy J, Larher F (1998) Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Plant Physiol 104:195–202

    Article  CAS  Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34

    Article  CAS  Google Scholar 

  • Barragán V, Leidi EO, Andrés Z, Rubio L, Luca AD, Fernández JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24(3):1127–1142

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bartels D, Hussain SS (2008) Current status and implications of engineering drought tolerance in plants using transgenic approaches. CAB Rev Perspect Agri Vet Sci Nutri Natur Sci 3:020

    Google Scholar 

  • Bhatnagar P, Minocha R, Minocha S (2002) Genetic manipulation of the metabolism of polyamines in poplar cells: the regulation of putrescine catabolism. Plant Physiol 128:1455–1469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blázquez MA, Santos E, Flores CL, Martínez-Zapater JM, Salinas J, Gancedo C (1998) Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J 13:685–689

    Article  PubMed  Google Scholar 

  • Blokhina O, Fagerstedt KV (2010) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol Plant 138:447–446

    Article  CAS  PubMed  Google Scholar 

  • Blunden G, Gordon SM (1986) Betaines and their sulphonio analogues in marine algae. Prog Phycol Res 4:39–80

    CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Bohnert HJ, Vernon DM, DeRocher EJ, Michalowski CB, Cushman JC (1992) Biochemistry and molecular biology of CAM. In: Wray Z (ed) Inducible plant proteins. Cambridge University Press, Cambridge, UK, pp 113–137

    Chapter  Google Scholar 

  • Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J 277:2022–2037

    Article  CAS  PubMed  Google Scholar 

  • Bose J, Pottosin I, Shabala SS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci 2:85

    Article  PubMed Central  PubMed  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    PubMed Central  CAS  PubMed  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101:9909–9914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chadalavada SV, Rajendrakumar RBVB, Reddy AR (1994) Proline–protein interactions: protection of structural and functional integrity of M4 lactate dehydrogenase. Biochem Biophys Res Commun 201:957–963

    Article  Google Scholar 

  • Cha-um S, Supaibulwatana K, Kirdmanee C (2004) Biochemical and physiological responses of Thai jasmine rice (Oryza sativa L. ssp. indica cv. KDML105) to salt-stress. Sci Asia 30:247–253

    Article  Google Scholar 

  • Cha-um S, Supaibulwatana K, Kirdmanee C (2007) Glycinebetaine accumulation, physiological characterizations, and growth efficiency in salt tolerant and salt sensitive lines of indica rice (Oryza sativa L. ssp. indica) response to salt stress. J Agron Crop Sci 193:157–166

    Article  CAS  Google Scholar 

  • Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci U S A 102:3459–3464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng L, Zou Y, Ding S, Zhang Y, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499

    Article  CAS  PubMed  Google Scholar 

  • Cohen AS, Popovic RB, Zalik S (1979) Effects of polyamines on chlorophyll and protein content, photochemical activity, and chloroplast ultrastructure of barley leaf discs during senescence. Plant Physiol 64:717–720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cona A, Cenci F, Cervelli M, Federico R, Mariottini P, Moreno S, Angelini R (2003) Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyle. Plant Physiol 131:803–813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  CAS  PubMed  Google Scholar 

  • Cortina C, Culiáñez-Macià A (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    Article  CAS  Google Scholar 

  • Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    Article  CAS  PubMed  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cushman J, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  • Del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signalling. Plant Physiol 141:330–335

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    Article  CAS  PubMed  Google Scholar 

  • Dey A, Gupta K, Gupta B (2014) Role of polyamines in plant-pathogen interactions. In: Anjum NA, Gill SS, Gill R (eds) Plant adaptation to environmental change: significance of amino acids and their derivatives. CABI, Oxfordshire, p 222, Chapter 12. Doi: 10.1079/9781780642734.0222

  • Djilianov D, Ivanov S, Moyankova D, Miteva L, Kirova E, Alexieva V, Joudi M, Peshev D, Van den Ende W (2011) Sugar ratios, glutathione redox status and phenols in the resurrection species Haberlea rhodopensis and the closely related non-resurrection species Chirita eberhardtii. Plant Biol 13:767–776

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos VC, Bragança CR, Passos FJ, Passos FM (2013) Kinetics of growth and ethanol formation from a mix of glucose/xylose substrate by Kluyveromyces marxianus UFV-3. Antonie Van Leeuwenhoek 103:153–161

    Article  CAS  PubMed  Google Scholar 

  • Drennan PM, Smith MT, Goldsworthy D, van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. J Plant Physiol 142:493–496

    Article  CAS  Google Scholar 

  • Duan J, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635

    Article  CAS  PubMed  Google Scholar 

  • Duhazé C, Gouzerh G, Gagneul D, Larher F, Bouchereau A (2002) The conversion of spermidine to putrescine and 1,3-deaminopropane in the roots of Limonium tataricum. Plant Sci 163:639–646

    Article  Google Scholar 

  • Elbein AD (1974) The metabolism of alpha, alpha-trehalose. Adv Carbohydr Chem Biochem 30:227–256

    Article  CAS  PubMed  Google Scholar 

  • Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    Article  CAS  Google Scholar 

  • Fahrendorf T, Li W, Shrrosh BS, Dixon RA (1995) Stress response in alfalfa (Medicago sativa L.) XIX. Transcriptional activation of oxidative pentose phosphate pathway genes at the onset of the isoflavonoid phytoalexin response. Plant Mol Biol 28:885–900

    Article  CAS  PubMed  Google Scholar 

  • Ford CW (1984) Accumulation of low molecular solutes in water stress tropical legumes. Phytochemistry 23:1007–1015

    Article  CAS  Google Scholar 

  • Foyer CH (1997) Oxygen metabolism and electron transport in photosynthesis. In: Scandalios J (ed) Molecular biology of free radical scavenging systems. Cold Spring Harbor Laboratory Press, New York, pp 587–621

    Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux P (eds) Causes of photooxidative stresses and amelioration of defence systems in plants. CRC Press, Boca Raton, pp 1–42

    Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Franceschetti M, Hanfrey C, Scaramagli S, Torrigiani P, Bagni N, Burtin D, Michael AJ (2001) Characterization of monocot and dicot plant S-adenosyl-L-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames. Biochem J 53:403–409

    Article  Google Scholar 

  • Franceschetti M, Fornale S, Tassoni A, Zuccherelli K, Mayer MJ, Bagni N (2004) Effects of spermidine synthase overexpression on polyamine biosynthetic pathway in tobacco plants. J Plant Physiol 161:989–1001

    Article  CAS  PubMed  Google Scholar 

  • Funck D, Stadelhofer B, Koch W (2008) Ornithine-delta-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol 8:40

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gage DA, Rathinasabapathi B (1999) Role of glycine betaine and dimethylsulfoniopropionate in water stress tolerance. In: Shinozaki K, Yamaguchi-shinozaki K (eds) Molecular response to cold, drought, heat and salt stress in higher plants. RG Landes Company, Georgetown, pp 125–152

    Google Scholar 

  • Gagneul D, Ainouche A, Duhaze C, Lugan R, Larher FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galston AW, Kaur-Sawhney R, Altabella T, Tiburcio AF (1997) Plant polyamines in reproductive activity and response to abiotic stress. Bot Acta 110:197–207

    Article  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geeta (2014) Genetic engineering for osmolyte overproduction for abiotic stress tolerance in plants. Int J Curr Res 6:6130–6135

    Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 51:26–33

    Article  Google Scholar 

  • Ginzberg I, Stein H, Kapulnik Y, Szabados L, Strizhov N, Schell J, Koncz C, Zilberstein A (1998) Isolation and characterization of two different cDNAs of delta1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Mol Biol 38:755–764

    Article  CAS  PubMed  Google Scholar 

  • Goddijn OJM, van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4:315–319

    Article  PubMed  Google Scholar 

  • Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    Article  CAS  PubMed  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  CAS  PubMed  Google Scholar 

  • Groppa MD, Benavides MP, Tomaro ML (2003) Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Sci 16:481–488

    Google Scholar 

  • Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35:2015–2036

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014, Article ID 701596, 18 pp. Doi: 10.1155/2014/701596

    Google Scholar 

  • Gupta B, Gupta K, Huang B (2014) Role of polyamines in plant abiotic stress responses. In: Pessarakli M (ed) Handbook of crop stress physiology (3rd edn). CRC Press (Taylor & Francis), Boca Raton, pp 369–388, Chapter 19. Doi: 10.1201/b16675-24

    Google Scholar 

  • Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han C, Liu Q, Yang Y (2009) Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defence of Picea asperata seedlings. Plant Growth Regul 58:153–162

    Article  CAS  Google Scholar 

  • Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 19:4248–4256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanzawa Y, Imai A, Michael AJ, Komeda Y, Takahashi T (2002) Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett 527:176–180

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Tamaki K, Suzuki K, Yamada Y (1998) Molecular cloning of plant spermidine synthases. Plant Cell Physiol 39:73–79

    Article  CAS  PubMed  Google Scholar 

  • Hasthanasombut S, Ntui V, Supaibulwatana K, Mii M, Nakamura I (2010) Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco. Plant Biotechnol Rep 4:75–83

    Article  Google Scholar 

  • He L, Ban Y, Inoue H, Matsuda N, Liu J, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69:2133–2141

    Article  CAS  PubMed  Google Scholar 

  • Heyno E, Mary V, Schopfer P, Krieger-Liszkay A (2011) Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. Planta 234:35–45

    Article  CAS  PubMed  Google Scholar 

  • Holmstrom KO, Mantyla E, Welin B, Mandal A, Palva ET (1996) Drought tolerance in tobacco. Nature 379:683–684

    Article  Google Scholar 

  • Holmstrom KO, Somersalo S, Mandal A, Palva ET, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51:177–185

    Article  CAS  PubMed  Google Scholar 

  • Hong ZL, Lakkineni K, Zhang ZM, Verma DPS (2000) Removal of feedback inhibition of Delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoque MA, Banu MNA, Okuma E, Amako K, Nakamura K, Shimoishi Y, Murata Y (2007) Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. J Plant Physiol 164:1457–1468

    Article  CAS  PubMed  Google Scholar 

  • Hoque MA, Okuma E, Nakamara Y, Shimoishi Y, Murata Y (2008) Proline and glycinebetaine enhance antioxidant defence and methylglyoxal detoxification systems and reduce NaCl induced damage in cultured tobacco cells. J Plant Physiol 165:813–824

    Article  CAS  PubMed  Google Scholar 

  • Hu WH, Song SX, Shi K, Xia XJ, Zhou YH, Yu JQ (2008) Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling. Photosynthetica 46:581–588

    Article  CAS  Google Scholar 

  • Hu Y, Chen L, Wang H, Zhang L, Wang F, Yu D (2013) Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J 74:730–745

    Article  CAS  PubMed  Google Scholar 

  • Hummel I, Gouesbet G, El Amrani A, Ainouche A, Couee I (2004) Characterization of the two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress. Gene 342:199–209

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559–564

    Article  CAS  PubMed  Google Scholar 

  • Imai R, Ali A, Pramanik HR, Nakaminami K, Sentoku N, Kato H (2004) A distinctive class of spermidine synthase is involved in chilling response in rice. J Plant Physiol 161:883–886

    Article  CAS  PubMed  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166(15):1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Ashraf M (2005) Changes in growth, photosynthetic capacity, and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regul 46:19–30

    Article  CAS  Google Scholar 

  • Janowitz T, Kneifel H, Piotrowski M (2003) Identification and characterization of plant agmatine iminohydrolase, the last missing link in polyamine biosynthesis of plants. FEBS Lett 544:258–261

    Article  CAS  PubMed  Google Scholar 

  • Jantaro S, Mäenpää P, Mulo P, Incharoensakdi A (2003) Content and biosynthesis of polyamines in salt and osmotically stressed cells of Synechocystis sp. PCC 680. FEMS Microbiol Lett 228:129–135

    Article  CAS  PubMed  Google Scholar 

  • Janz D, Behnke K, Schnitzler JP, Kanawati B, Schmitt-Kopplin P, Polle A (2010) Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol 10:150

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jimenez-Bremont JF, Becerra-Flora A, Hernandez-Lucero E, Rodriguez-Kessler M, Acosta-Gallegos JA, Ramirez-Pimentel JG (2006) Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. Biol Plant 50:763–766

    Article  CAS  Google Scholar 

  • Kakkar RK, Sawhney VK (2002) Polyamine research in plants a changing perspective. Physiol Plant 116:281–292

    Article  CAS  Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Dale WH, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karakas B, Ozias-Akins P, Stushnoff C, Suefferheld M, Rieger M (1997) Salinity and drought tolerance in mannitol-accumulating transgenic tobacco. Plant Cell Environ 20:609–616

    Article  Google Scholar 

  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mantyla E, Palva ET, Van Dijck P, Holmstrom KO (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386

    Article  CAS  PubMed  Google Scholar 

  • Kasinathan V, Wingler A (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Plant Physiol 121:101–107

    Article  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  CAS  PubMed  Google Scholar 

  • Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK (2009) Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with upregulation of several stress responsive genes. Plant Biotechnol J 7:512–526

    Article  CAS  PubMed  Google Scholar 

  • Kaumar A, Altabella T, Taylor MA, Tiburcio AF (1997) Recent advances in polyamine research. Trends Plant Sci 2:124–130

    Article  Google Scholar 

  • Kaur-Sawhney R, Tiburcio AF, Altabella T, Galston A (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12

    Google Scholar 

  • Keller F, Pharr DM (1996) Metabolism of carbohydrates in sinks and sources: galactosyl-sucrose oligosaccharides. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops. Marcel Dekker, New York, pp 115–184

    Google Scholar 

  • Kempa S, Krasensky J, Dal Santo S, Kopka J, Jonak C (2008) A central role of abscisic acid in stress-regulated carbohydrate metabolism. PLoS One 3, e3935

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    Article  CAS  Google Scholar 

  • Kesari R, Lasky JR, Villamor JG, Des Marais DL, Chen Y-JC, Liu T-W, Lin W, Juenger TE, Verslues PE (2012) Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation. Proc Natl Acad Sci U S A 109:9197–9202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan S, Ahmed N, Ahmed F, Kumar R (2010) Naturally occurring organic osmolytes: From cell physiology to disease prevention. IUBMB Life 62:891–895

    Article  CAS  PubMed  Google Scholar 

  • Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of 1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klähn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13:551–562

    Article  PubMed  CAS  Google Scholar 

  • Knott JM, Römer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581:3081–3086

    Article  CAS  PubMed  Google Scholar 

  • Kumar R (2009) Role of naturally occurring osmolytes on the protein and stability. Arch Biochem Biophys 491:1–6

    Article  CAS  PubMed  Google Scholar 

  • Kumria R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamine metabolism, in vitro morphogenesis and response to salt stress. J Plant Physiol 159:983–990

    Article  CAS  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007a) Advances in polyamine research in 2007. J Plant Res 120:345–350

    Article  CAS  PubMed  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007b) The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Plant Signal Behav 2:250–251

    Article  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov VV, Shevyakova NI (2007) Polyamines and stress tolerance of plants. Plant Stress 1:50–71

    Google Scholar 

  • Kuznetsov V, Shevyakova NI (2010) Polyamines and plant adaptation to saline environments. In: Remawat KG (ed) Desert plants. Springer, Berlin-Heidelberg, pp 261–298

    Chapter  Google Scholar 

  • Lamitina T, Huang CG, Strange K (2006) Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression. Proc Natl Acad Sci U S A 103:12173–12178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larher FR, Aziz A, Gibon Y, Trotel-Aziz P, Sulpice R, Bouchereau A (2003) An assessment of the physiological properties of the so-called compatible solutes using in vitro experiments with leaf discs. Plant Physiol Biochem 41:657–t66

    Article  CAS  Google Scholar 

  • Le Rudulier D, Strom AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068

    Article  PubMed  Google Scholar 

  • Lehmann S, Funck D, Szabados L, Rentsch D (2010) Proline metabolism and transport in plant development. Amino Acids 39:949–962

    Article  CAS  PubMed  Google Scholar 

  • Leyman B, Van Dijck P, Thevelein JM (2001) An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci 6:510–513

    Article  CAS  PubMed  Google Scholar 

  • Leyman B, Avonce N, Ramon M, Van Dijck P, Iturriaga G, Thevelein JM (2006) Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. J Biotechnol 121:309–317

    Article  CAS  PubMed  Google Scholar 

  • Lilius G, Holmberg N, Bulow L (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Nat Biotechnol 14:177–180

    Article  CAS  Google Scholar 

  • Liu K, Fu HH, Bei QX, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu JH, Nada K, Honda C, Kitashiba H, Wen XP, Pang XM, Moriguchi T (2006) Polyamine biosynthesis of apple callus under salt stress: importance of Arginine decarboxylase pathway in stress response. J Exp Bot 57:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    Article  CAS  Google Scholar 

  • Liu JH, Nakajima I, Moriguchi T (2011) Effects of salt and osmotic stresses on free polyamine content and expression of polyamine biosynthetic genes in Vitis vinifera. Biol Plant 55:340–344

    Article  CAS  Google Scholar 

  • López M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA (2008) Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant 134(4):575–582

    Article  PubMed  CAS  Google Scholar 

  • Lugan R, Niogret MF, Leport L, Guegan JP, Larher FR, Savoure A, Kopka J, Bouchereau A (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J 64:215–229

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Liu WW, Chen X, Wu YJ, Yu ZL (2009) Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresour Technol 100:1279–1284

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59:37–49

    Article  CAS  Google Scholar 

  • Makela P, Mantila J, Hinkkanen R, Pehu E, Peltonen-Sainio P (1996a) Effects of foliar applications of glycine betaine on stress tolerance, growth, and yield of spring cereals and summer turnip rape in Finland. J Agr Crop Sci 176:223–234

    Article  CAS  Google Scholar 

  • Makela P, Peltonen-Sainio P, Jokinen K, Pehu E, Setala H, Hinkkanen R, Somersalo S (1996b) Uptake and translocation of foliar applied glycine betaine in crop plants. Plant Sci 121:221–230

    Article  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148

    Article  CAS  Google Scholar 

  • Mattioli R, Marchese D, D’Angeli S, Altamura MM, Costantino P, Trovato M (2008) Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Mol Biol 66(3):277–288

    Article  CAS  PubMed  Google Scholar 

  • McCue KF, Hanson AD (1990) Drought and salt tolerance: towards understanding and application. Trends Biotechnol 8:358–362

    Article  CAS  Google Scholar 

  • Minocha SC, Sun DY (1997) Stress tolerance in plants through transgenic manipulation of polyamine biosynthesis. Plant Physiol 114:S297

    Google Scholar 

  • Miranda JA, Avonce N, Suarez R, Thevelein JM, Van Dijck P, Iturriaga G (2007) A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565–577

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2011) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra S, Minocha R, Long S, Minocha SC (2010) Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids. Amino Acids 38:1117–1129

    Article  CAS  PubMed  Google Scholar 

  • Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA (2008) Plant polyamine catabolism: the state of the art. Plant Signal Behav 3:1061–1066

    Article  PubMed Central  PubMed  Google Scholar 

  • Mundree SG, Baker B, Mowla S, Peters S, Marais S, Willigen CV, Govender K, Maredza A, Muyanga S, Farrant JM, Thomson JA (2002) Physiological and molecular insights into drought tolerance. Afr J Biotechnol 1:28–38

    Article  CAS  Google Scholar 

  • Nadeau P, Delaney S, Chouinard L (1987) Effects of cold hardening on the regulation of polyamine levels in wheat (Triticum aestivum L.) and alfalfa (Medicago sativa L.). Plant Physiol 84:73–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakayama N, Saneoka H, Moghaieb REA, Premachandra GS, Fujita K (2007) Response of growth, photosynthetic gas exchange, translocation of 13C-labelled photosynthate and N accumulation in two soybean (Glycine max L. Merrill) cultivars to drought stress. Int J Agric Biol 9:669–674

    CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    Article  CAS  PubMed  Google Scholar 

  • Navakouidis E, Lütz C, Langebartels C, Lütz-Meindl U, Kotzabasis K (2003) Ozone impact on the photosynthetic apparatus and the protective role of polyamines. Biochim Biophys Acta 1621:160–169

    Article  CAS  Google Scholar 

  • Nayyar H (2005) Putrescine increases floral retention, pod set and seed yield in cold stressed chickpea. J Agron Crop Sci 191:340–345

    Article  CAS  Google Scholar 

  • Nayyar H, Chander S (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J Agron Crop Sci 190:355–365

    Article  CAS  Google Scholar 

  • Nayyar H, Kaur S, Singh S, Kumar S, Singh KJ, Dhir KK (2005) Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Bot Bull Acad Sin 46:333–338

    CAS  Google Scholar 

  • Ndayiragiji A, Lutts S (2006) Exogenous putrescine reduces sodium and chloride accumulation in NaCl-treated calli of the salt-sensitive rice cultivar I Kong Pao. Plant Growth Regul 48:51–63

    Article  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Neily MH, Baldet P, Arfaoui I, Saito T, Li QL, Asamizu E, Matsukura C, Moriguchi T, Ezura H (2011) Overexpression of apple spermidine synthase 1 (MdSPDS1) leads to significant salt tolerance in tomato plants. Plant Biotechnol 28(1):33–42

    Article  CAS  Google Scholar 

  • Nelson DE, Rammesmayer G, Bohnert HJ (1998) Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell 10:753–764

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niu X, Bressan R, Hasegawa P, Pardo J (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    PubMed Central  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604

    Article  CAS  PubMed  Google Scholar 

  • Nyyssola A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikainen T (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem 275:22196–22201

    Article  CAS  PubMed  Google Scholar 

  • Oh MJ, Chun HS, Lee CB (2003) Differences in photosynthetic characterization of salt tolerance for two rice (Oryza sativa) cultivars. J Plant Biol 46:17–22

    Article  CAS  Google Scholar 

  • Pang XM, Zhang ZY, Wen XP, Ban Y, Moriguchi T (2007) Polyamine, all-purpose players in response to environment stresses in plants. Plant Stress 1:173–188

    Google Scholar 

  • Panicot M, Minguet EG, Ferrando A, Alcázar R, Blázquez MA, Carbonell J, Altabella T, Koncz C, Tiburcio AF (2002) A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis. Plant Cell 14:2539–2551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Sch€offl F (2004) Galactinol synthase 1: a novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol 136:3148–3158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paschalidis KA, Roubelakis-Angelakis KA (2005a) Sites and regulation of polyamine catabolism in the tobacco plant. Correlations with cell division/expansion, cell cycle progression, and vascular development. Plant Physiol 138:2174–2184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paschalidis KA, Roubelakis-Angelakis KA (2005b) Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. Plant Physiol 138:142–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peremarti A, Bassie L, Christou P, Capell T (2009) Spermine facilitates recovery from drought but does not confer drought tolerance in transgenic rice plants expressing Datura stramonium S-adenosylmethionine decarboxylase. Plant Mol Biol 70:253–264

    Article  CAS  PubMed  Google Scholar 

  • Peréz-Amador MA, Leon J, Green PJ, Carbonell J (2002) Induction of the Arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol 130:1454–1463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Peshev D, Vergauwen R, Moglia A, Hideg E, Van den Ende W (2013) Towards understanding vacuolar antioxidant mechanisms: a role for fructans? J Exp Bot 64:1025–1038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piotrowski M, Janowitz T, Kneifel H (2003) Plant C–N hydrolases and the identification of a plant N-carbamoylputrescine amidohydrolase involved in polyamine biosynthesis. J Biol Chem 278:1708–1712

    Article  CAS  PubMed  Google Scholar 

  • Popovic RB, Kyle DJ, Cohen AS, Zalik S (1979) Stabilization of thylakoid membranes by spermine during stress induced senescence of barley leaf discs. Plant Physiol 64:721–726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pottosin I, Velarde-Buendía AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J Exp Bot 65:1271–1283

    Article  CAS  PubMed  Google Scholar 

  • Prabhavathi VR, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24:273–282

    Article  CAS  Google Scholar 

  • Pramanik MHR, Imai R (2005) Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762

    Article  CAS  PubMed  Google Scholar 

  • Qi YC, Wang FF, Zhang H, Liu WQ (2010) Overexpression of suadea salsa S-adenosylmethionine synthetase gene promotes salt tolerance in transgenic tobacco. Acta Physiol Plant 32:263–269

    Article  CAS  Google Scholar 

  • Radukina NL, Ivanov YV, Kartashov AV, Shevyakova NI, Rakitin VY, Khryanin VN, Kuznetsov VV (2007) Inducible and constitutive mechanisms of salt stress resistance in Geum urbanum. Russ J Plant Physiol 54:612–618

    Article  CAS  Google Scholar 

  • Rammesmayer G, Pichorner H, Adams P, Jensen RG, Bohnert HJ (1995) Characterization of IMT1, myo-inositol O-methyltransferase, from Mesembryanthemum crystallinum. Arch Biochem Biophys 322:183–188

    Article  CAS  PubMed  Google Scholar 

  • Rawia Eid A, Taha LS, Ibrahiem SMM (2011) Alleviation of adverse effects of salinity on growth, and chemical constituents of marigold plants by using glutathione and ascorbate. J Appl Sci Res 7:714–721

    Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Ribarits A, Abdullaev A, Tashpulatov A, Richter A, Heberle-Bors E, Touraev A (2007) Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. Planta 225:1313–1324

    Article  CAS  PubMed  Google Scholar 

  • Richards AB, Krakowka S, Dexter LB (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40:871–898

    Article  CAS  PubMed  Google Scholar 

  • Rider JE, Hacker A, Mackintosh CA, Pegg AE, Woster PM, Casero RA Jr (2007) Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–240

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992

    Article  CAS  Google Scholar 

  • Roy P, Niyogi K, Sengupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress induced damage of Plasma membrane and PM-bound H + ATPase in salt-tolerant and salt sensitive rice cultivars. Plant Sci 168:583–591

    Article  CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2011) Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J Plant Physiol 168:317–328

    Article  CAS  PubMed  Google Scholar 

  • Saha J, Brauer EK, Sengupta A, Popescu SC, Gupta K, Gupta B (2015) Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci 3:21

    Article  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 84:407–421

    Google Scholar 

  • Saleethong P, Sanitchon J, Kong-ngern K, Theerakulpisut P (2011) Pretreatment with spermidine reverses inhibitory effects of salt stress in two rice (Oryza sativa L.) cultivars differing in salinity tolerance. Asian J Plant Sci 10:245–254

    Article  CAS  Google Scholar 

  • Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132:209–219

    CAS  PubMed  Google Scholar 

  • Schneider T, Keller F (2009) Raffinose in chloroplasts is synthesized in the cytosol and transported across the chloroplast envelope. Plant Cell Physiol 50:2174–2182

    Article  CAS  PubMed  Google Scholar 

  • Sebela M, Radova A, Angelini R, Tavladoraki P, Frebort I, Pec P (2001) FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci 160:197–207

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Sfichi L, Ioannidis N, Kotzabasis K (2004) Thylakoid-associated polyamines adjust the UV-B sensitivity of the photosynthetic apparatus by means of light-harvesting complex II changes. Photochem Photobiol 80:499–506

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA, Pottosin I (2007) Polyamines prevent NaCl- induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 581:1993–1999

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Dietz K (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defence system in growing rice seedlings exposed to toxic concentrations of aluminium. Plant Cell Rep 26:2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Hohmann S, Jensen RG, Bohnert H (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121:45–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shevyakova NI, Cheremisina AI, Kuznetsov VV (2011) Phytoremediation potential of amaranthus hybrids: antagonism between nickel and iron and chelating role of polyamines. Russ J Plant Physiol 58:634–642

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: difference and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Shu S, Guo SR, Yuan LY (2012) A review: polyamines and photosynthesis. In: Najafpour MM (ed) Advances in photosynthesis – fundamental aspects. InTech, Rijeka, pp 439–464

    Google Scholar 

  • Simon-Sarkadi L, Kocsy G, Várhegyi Á, Galiba G, De Ronde J (2005) Genetic manipulation of proline accumulation influences the concentrations of other amino acids in soybean subjected to simultaneous drought and heat stress. J Agric Food Chem 53:7512–7517

    Article  CAS  PubMed  Google Scholar 

  • Simon-Sarkadi L, Kocsy G, Várhegyi Á, Galiba G, De Ronde JA (2006) Stress-induced changes in the free amino acid composition in transgenic soybean plants having increased proline content. Plant Biol 50:793–796

    Article  CAS  Google Scholar 

  • Sinkevich MS, Naraykina NV, Trunova TI (2010) Sugars participate in the antioxidant protection from oxidative stress induced by paraquat in the case of potato transformed with yeast invertase gene. Dokl Akad Nauk 434:570–573

    Google Scholar 

  • Sivakumar P, Sharmila P, Saradhi PP (2000) Proline alleviates salt-stress induced enhancement in ribulose-1,5-bisphosphate oxygenase activity. Biochem Biophys Res Commun 279:512–515

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Song J, Nada K, Tachibana S (2002) Suppression of s-adenosylmethionine decarboxylase activities is a major cause for high temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.). Plant Cell Physiol 43:619–627

    Article  CAS  PubMed  Google Scholar 

  • Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234:331–345

    Article  CAS  PubMed  Google Scholar 

  • Soyka S, Heyer AG (1999) Arabidopsis knockout mutation of ADC2 gene reveals inducibility by osmotic stress. FEBS Lett 458:219–223

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16

    Article  CAS  Google Scholar 

  • Storey R, Ahmad N, Wyn Jones RG (1977) Taxonomic and ecological aspects of the distribution of glycinebetaine and related compounds in plants. Oecologia 27:319–332

    Article  Google Scholar 

  • Stoyanova S, Geuns J, Hideg E, Van den Ende W (2011) The food additives inulin and stevioside counteract oxidative stress. Int J Food Sci Nutr 62:207–214

    Article  CAS  PubMed  Google Scholar 

  • Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    Article  CAS  PubMed  Google Scholar 

  • Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57:1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61:2807–2818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sung MS, Chow TJ, Lee TM (2011) Polyamine acclimation alleviates hyper salinity-induced oxidative stress in a marine green macroalga, Ulva fasciata, by modulation of antioxidative enzyme gene expression. J Phycol 47:538–547

    Article  CAS  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabadoz L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Newton RJ (2005) Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regul 46:31–43

    Article  CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65:270–281

    Article  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1992) Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci U S A 89:2600–2604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58:244–258

    Article  CAS  PubMed  Google Scholar 

  • Thomas JC, Sepahi M, Arendall B, Bohnert HJ (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ 18:801–806

    Article  CAS  Google Scholar 

  • Thu-Hang P, Bassie L, Safwat G, Trung-Nghia P, Christou P, Capell T (2002) Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. Plant Physiol 129:1744–1754

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Uemura M, Steponkus PL (1997) Artificial manipulation of the intracellular sucrose content alters the incidence of freeze-induced membrane lesions of isolated protoplasts of Arabidopsis thaliana. Cryobiology 35:336

    Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926

    Article  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Usadel B, Blasing OE, Gibon Y, Poree F, Hohne M, Gunter M, Trethewey R, Kamlage B, Poorter H, Stitt M (2008) Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. Plant Cell Environ 31:518–547

    Article  CAS  PubMed  Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging. J Exp Bot 60:9–18

    Article  PubMed  CAS  Google Scholar 

  • Van Leeuwenhoek A (1678) Observationes D. Anthonii Leeuwenhoek, de natis e semine genitali animalculis. Philos Trans R Soc Lond 12:1040–1043

    Article  Google Scholar 

  • Van-Houtte H, Vandesteene L, López-Galvis L, Lemmens L, Kissel E, Carpentier S, Feil R, Avonce N, Beeckman T, Lunn JE, Van Dijck P (2013) Overexpression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in abscisic acid-induced stomatal closure. Plant Physiol 161:1158–1171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:5966

    Article  Google Scholar 

  • Vergnolle C, Vaultier MN, Taconnat L, Renou JP, Kader JC, Zachowski A, Ruelland E (2005) The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol 139:1217–1233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defence system. J Plant Physiol 162:669–677

    Article  CAS  PubMed  Google Scholar 

  • Vernon DM, Bohnert HJ (1992) A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J 11:2077–2085

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    Article  CAS  Google Scholar 

  • Walden R, Cordeiro A, Tiburcio AF (1997) Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol 113:1009–1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Shi G, Xu Q, Hu J (2007) Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J Plant Physiol 164:1062–1070

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhu Y, Wang L, Liu X, Liu Y, Phillips J, Deng X (2009) A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. Planta 230:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Gosal SS (2011) Introduction of OsglyII gene into Indica rice through particle bombardment for increased salinity tolerance. Biol Plant 55:536–540

    Article  CAS  Google Scholar 

  • Wani SH, Lone AA, da Silva T, Gosal SS (2010) Effects of NaCl stress on callus induction and plant regeneration from mature seeds of rice (Oryza sativa L.). Asian Aust J Plant Sci Biotech 4:56–71

    Google Scholar 

  • Watson MB, Malmberg RL (1996) Regulation of Arabidopsis thaliana (L.) heynh arginine decarboxylase by potassium deficiency stress. Plant Physiol 111:1077–1083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watson MB, Yu W, Galloway G, Malmberg RL (1997) Isolation and characterization of a second arginine decarboxylase cDNA from Arabidopsis (Accession No. AF009647). Plant Physiol 114:1569

    Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue M, Hao YJ, Honda C, Moriguchi T (2008) Overexpression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    Article  CAS  PubMed  Google Scholar 

  • Wi SJ, Kim WT, Park KY (2006) Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Tsuichihara N, Etoh T, Iwai S (2007) Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ 30:1320–1325

    Article  CAS  PubMed  Google Scholar 

  • Yancey P, Clark ME, Had SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte system. Science 217:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycine betaine in salt-stressed maize plants. Physiol Plant 124:343–352

    Article  CAS  Google Scholar 

  • Yang JC, Zhang JH, Liu K, Wang ZQ, Liu LJ (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycine betaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86

    Article  CAS  PubMed  Google Scholar 

  • Yeo ET, Kwon HB, Han SE, Lee JT, Ryu JC, Byu MO (2000) Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae. Mol Cells 10:263–268

    CAS  PubMed  Google Scholar 

  • Yiu JC, Juang LD, Fang DYT, Liu CW, Wu SJ (2009) Exogenous putrescine reduces flooding induced oxidative damage by increasing the antioxidant properties of Welsh onion. Sci Hortic 120:306–314

    Article  CAS  Google Scholar 

  • Zepeda-Jazo I, Shabala S, Chen Z, Pottosin II (2008) Na+-K+ transport in roots under salt stress. Plant Signal Behav 3:401–403

    Article  PubMed Central  PubMed  Google Scholar 

  • Zepeda-Jazo I, Velarde-Buendía AM, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, Pottosin II (2011) Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol 157:2167–2180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Tan W, Yang XH, Zhang HX (2008) Plastid expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 27:1113–1124

    Article  CAS  PubMed  Google Scholar 

  • Zhang RH, Li J, Guo SR, Tezuka T (2009a) Effects of exogenous putrescine on gas exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynth Res 100:155–162

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Jiang B, Li W, Song H, Yu Y, Chen J (2009b) Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Sci Hort 122:200–208

    Article  CAS  Google Scholar 

  • Zhang CY, Wang NN, Zhang YH, Feng QZ, Yang CW, Liu B (2013) DNA methylation involved in proline accumulation in response to osmotic stress in rice (Oryza sativa). Genet Mol Res 12:1269–1277

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Yang H (2008) Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis. Rehd Sci Hortic 116:442–447

    Article  CAS  Google Scholar 

  • Zhao F, Song CP, He J, Zhu H (2007) Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol 145:1061–1072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 61:66–71

    Article  Google Scholar 

  • Zuther E, Koehl K, Kopka J (2007) Comparative metabolome analysis of the salt response in breeding cultivars of rice. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Berlin-Heidelberg, New York, pp 285–315

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of technical facilities available at Presidency University, Kolkata. Financial assistance from DBT (RGYI) (Govt. of India) and W.B. State DST (Govt. of West Bengal) to BG and KG and DST-SERB (Govt. of India) to KG is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhaskar Gupta or Kamala Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Sengupta, A., Chakraborty, M., Saha, J., Gupta, B., Gupta, K. (2016). Polyamines: Osmoprotectants in Plant Abiotic Stress Adaptation. In: Iqbal, N., Nazar, R., A. Khan, N. (eds) Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2616-1_7

Download citation

Publish with us

Policies and ethics