Skip to main content

Advances in Molecular Mechanism Toward Understanding Plant-Microbe Interaction: A Study of M. oryzae Versus Rice

  • Chapter
Frontier Discoveries and Innovations in Interdisciplinary Microbiology

Abstract

Rice blast, caused by the fungus Magnaporthe oryzae, is the most devastating disease of rice which causes considerable economic loss worldwide. The interaction between rice and M. oryzae is an important model system for studying host-pathogen interactions. Since genomes of both species are sequenced, research is more focused by exploiting modern genetics, genomics, proteomics and bioinformatics. Recent research on functional genomics and candidate gene identification has helped to elucidate the role of resistance (R) and avirulence (Avr) genes and their interactions. Over the years, many avirulence genes (Avr) involved in pathogenicity and resistance genes (R) of rice involved in pathogen signaling molecules and defence response have been identified and characterized. Recent development in cloning of Avr genes (13) and R genes (22) and identification of many quantitative trait loci (QTL) has improved our understanding of rice-M. oryzae interaction at molecular level. This chapter is focusses on the current R and Avr genes cloned and characterized their structure, function and co-evolution, and the future research directions to study and understand the molecular mechanism of rice-M. oryzae interactions for better targeting and exploitation of host plant resistance towards management of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amante-Bordeos A, Stich LA, Nelson R, Damacio RD, Oliva NP, Aswidinoor H, Leung H (1992) Transfer of bacterial blight and blast resistance from tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor Appl Genet 84:345–354

    CAS  PubMed  Google Scholar 

  • Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–2276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Babujee L, Gnanamanickam SS (2000) Molecular tools for characterization of rice blast pathogen (Magnaporthe grisea) population and molecular marker-assisted breeding for disease resistance. Curr Sci 78:248–257

    CAS  Google Scholar 

  • Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan NH, Selvaraj G, Wei YD, King J (2009) Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. J Exp Bot 60:509–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bohnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH (2004) A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16:2499–2513

    Article  PubMed Central  PubMed  Google Scholar 

  • Bonman JM, Bandong JM, Lee YH, Lee EJ (1989) Race-specific partial resistance to blast in temperate japonica rice cultivars. Plant Dis 73:496–499

    Article  Google Scholar 

  • Brinkman FN, Frey KJ (1977) Yield component analysis of oat isolines that produce different grain yields. Crop Sci 17:165–168

    Article  Google Scholar 

  • Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao P, Jung KH, Choi D, Hwang D, Zhu J, Ronald PC (2012) The rice oligonucleotide array database: an atlas of rice gene expression. Rice 5:1–17

    Article  Google Scholar 

  • Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Ronald PC (2011) Innate immunity in rice. Trends Plant Sci 16:451–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen XW, Li SG, Ma YQ, Li HY, Zhou KD, Zhu LH (2004) Marker-assisted selection and pyramiding for three blast resistance genes, Pi-d(t)1, Pi-b, Pi-ta2, in rice. Sheng Wu Gong Cheng Xue Bao Chin J Biotechnol 20:708–714

    Google Scholar 

  • Chen S, Wang L, Que Z, Pan R (2005) Genetic and physical mapping of Pi37(t), a new gene conferring resistance to rice blast in the famous cultivar St. No. 1. Theor Appl Genet 111:1563–1570

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Shi Y, Liu W, Chai R, Fu Y, Zhuang J, Wu J (2011) A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics 38:209–216

    Article  CAS  PubMed  Google Scholar 

  • Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N et al (2011) Multiple translocation of the Avr-pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog. doi:10.1371/journal.ppat.1002147

    PubMed Central  PubMed  Google Scholar 

  • Costanzo S, Jia Y (2010) Sequence variation at the rice blast resistance gene Pi-km locus: implication for the development of allele specific markers. Plant Sci 178:523–530

    Article  CAS  Google Scholar 

  • Dai Y, Jia Y, Correll J, Wang X, Wang Y (2010) Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae. Fungal Genet Biol 47:973–980

    Article  CAS  PubMed  Google Scholar 

  • Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR (2012) A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae Funct Integr. Genomics 12, 215–228

    Google Scholar 

  • Dempsey DA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. Crit Rev Plant Sci 18:547–575

    Article  CAS  Google Scholar 

  • Deng Y, Zhu X, Shen Y, He Z (2006) Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet 113:705–713

    Article  CAS  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant- pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Ezuka A, Yunoki T, Sakurai Y, Shinoda H, Toriyama K (1969) Studies on the varietal resistance of rice to blast. II. Tests for field resistance in paddy fields and upland nursery beds. Bull Chugoku Natl Agric Exp Stn E4:32–53 (in Japanese, English summary)

    Google Scholar 

  • Farman ML, Leong SA (1998) Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Genetics 150:1049–1058

    PubMed Central  CAS  PubMed  Google Scholar 

  • Farman ML, Eto Y, Nakao T, Tosa Y, Nakayashiki H, Mayama S, Leong SA (2002) Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol Plant Microbe Interact 15:6–16

    Article  CAS  PubMed  Google Scholar 

  • Flor HH (1971) Current status of gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Fudal I, Böhnert HU, Tharreaub D, Lebrun MH (2005) Transposition of MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast fungus Magnaporthe grisea. Fungal Genet Biol 42:761–772

    Article  CAS  PubMed  Google Scholar 

  • Fujii K, Hayano-Saito Y (2007) Genetics of durable resistance to rice panicle blast derived from an indica rice variety Modan. Jpn J Plant Sci 1:69–76

    Google Scholar 

  • Fujii K, Hayano-Saito Y, Shumiya A, Inoue M (1995) Genetical mapping based on the RFLP analysis for the panicle blast resistance derived from a rice parental line St. No. 1. Breed Sci 45:209 (in Japanese)

    Google Scholar 

  • Fukuoka S, Okuno K (1997) QTL analysis for field resistance to rice blast using RFLP markers. Rice Genet Newsl 14:99

    Google Scholar 

  • Fukuoka S, Okuno K (2001) QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet 103:185–190

    Article  CAS  Google Scholar 

  • Fukuta Y, Mary JT, Yanoria H, Tsunematsu T, Imbe H, Kato LAE, Khush GS (2004) Development of international standard differential set for blast resistance in rice (Oryza sativa L.). In: Fisher RA New directions for a diverse planet. Proceedings of 4th international crop science congress, Brisbane, 26 Sep–1 Oct 2004

    Google Scholar 

  • Fukuta Y, Eboron L, Kobayashi N (2007) Review: genetic and breeding analysis of blast resistance in elite indica-type rice (Oryza sativa L.) bred in international rice research institute. JAEQ 41:101–114

    CAS  Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2012) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001

    Article  CAS  Google Scholar 

  • Geng XS, Yang MZ, Huang XQ, Cheng ZQ, Fu J, Sun T, Li J (2008) Cloning and analyzing of rice blast resistance gene Pi-ta + allele from Jinghong erect type of common wild rice (Oryza rufipogon Griff) in Yunnan. Yi Chuan 30:109–114

    Article  CAS  PubMed  Google Scholar 

  • Gouda PK, Saikumar S, Varma CMK, Nagesh K, Thippeswamy S, Shenoy V, Ramesha MS, Shashidhar HE (2012) marker-assisted breeding of Pi-1 and Pi-5 genes imparting resistance to rice blast in PRR78, restorer line of PUSA RH-10 basmati rice hybrid. Plant Breed. doi:10.1111/pbr.12017

    Google Scholar 

  • Haiyan H, Jieyun Z, Kangle Z, Mingjiu L (2012) Characterization of differentially expressed genes induced by virulent and avirulent Magnaporthe grisea strains in rice. Plant Omics J 5:542–546

    Google Scholar 

  • Hammond-Kosack KE, Jones JD (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayashi K, Hashimoto N, Daigen M, Ashikawa I (2004) Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108:212–220

    Google Scholar 

  • Hayashi K, Yoshida H, Ashikawa I (2006) Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet 113:251–260

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425

    Article  CAS  PubMed  Google Scholar 

  • Hayashi N, Inoue H, Kato T et al (2010) Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J 64:498–510

    Article  CAS  PubMed  Google Scholar 

  • Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128

    Article  CAS  Google Scholar 

  • Hogenhout SA, Vander Hoorn RAL, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22:115–122

    Article  CAS  PubMed  Google Scholar 

  • Huang CL, Hwang SY, Chiang YC, Lin TP (2008) Molecular evolution of the Pi-ta gene resistant to rice blast in wild rice (Oryza rufipogon). Genetics 179:1527–1538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imam J, Alam S, Variar M, Shukla P (2013) Identification of rice blast resistance gene Pi9 from Indian rice land races with STS marker and its verification by virulence analysis. Proc Natl Acad Sci India Sec B Biol Sci. doi:10.1007/s40011-013-0186-6

    Google Scholar 

  • Imam J, Alam S, Mandal NP, Maiti D, Variar M, Shukla P (2014a) Molecular Diversity and Mating Type distribution of the rice blast pathogen Magnaporthe oryzae in North-east and Eastern India. Indian J Microbiol. doi:10.1007/s12088-014-0504-6

    Google Scholar 

  • Imam J, Alam S, Mandal NP, Variar M, Shukla P (2014b) Molecular screening for identification of blast resistance genes in North East and Eastern Indian rice germplasm (Oryza sativa L.) with PCR based markers. Euphytica 196:199–211

    Article  CAS  Google Scholar 

  • Imam J, Mahto D, Mandal NP, Maiti D, Shukla P, Variar M (2014c) Molecular analysis of Indian rice germplasm accessions with resistance to blast pathogen. J Crop Improv 28:1–11

    Article  CAS  Google Scholar 

  • Imam J, Alam S, Mandal NP, Shukla P, Sharma TR, Variar M (2015) Molecular identification and virulence analysis of AVR genes in rice blast pathogen, Magnaporthe oryzae from Eastern India. Euphytica. doi:10.1007/s10681-015-1465-5

    Google Scholar 

  • Jeon JS, Chen SD, Yi GH, Wang GL, Ronald PC (2003) Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol Genet Genomics 269:280–289

    CAS  PubMed  Google Scholar 

  • Jeung JU, Kim BR, Cho YC, Han SS, Moon HP, Lee YT, Jena KK (2007) A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet 115:1163–1177

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. Eur Mol Biol Org 19:4004–4014

    Article  CAS  Google Scholar 

  • Jian-li W, Ronh-yao C, Ye-yang F, De-bao L, Kang-le Z, Leung H, Jie-yun Z (2004) Clustering of major genes conferring blast resistance in a durable resistance rice cultivar Gumei 2. Rice Sci 11:161–164

    Google Scholar 

  • Jia Y, Martin R (2008) Identification of a new locus, Ptr(t), required for rice blast resistance gene Pi-tamediated resistance. Mol Plant Microbe Interact 21:396–403

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Jia MH, Wang X, Liu G (2012) Indica and Japonica crosses resulting in linkage block and recombination suppression on rice chromosome 12. PLoS One. doi:10.1371/journal.pone.0043066

    Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N et al (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103:11086–11091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang S, Sweigard JA, Valent B (1995) The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 8:939–948

    Article  CAS  PubMed  Google Scholar 

  • Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R (2012) Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. doi:10.1111/j.1365-313X.2012.05110.x

    Google Scholar 

  • Khang C, Park SY, Lee YH, Valent B, Kang S (2008) Genome organization and evolution of the Avr-Pita avirulence gene family in the Magnaporthe grisea species complex. Mol Plant Microbe Interact 21:658–670

    Article  CAS  PubMed  Google Scholar 

  • Khush GS, Jena KK (2009) Current status and future prospects for research on blast resistance in rice (Oryza sativa L.). In: Wang X, Valent B (eds) Advances in genetics, genomics and control of rice blast disease. Springer, Dordrecht, p 1–10

    Google Scholar 

  • Kiyosawa S (1972) Genetics of blast resistance. In: International Rice Research Institute (eds) Rice breeding. International Rice Research Institute, Los Banos, pp 203–225

    Google Scholar 

  • Kiyosawa S (1974) Studies on genetics and breeding of blast resistance in rice. Misc Publ Natl Inst Agric Sci 1:1–587 (in Japanese)

    Google Scholar 

  • Kiyosawa S, Ikehashi S, Kato H, Ling ZZ (1981) Pathogenicity tests of Philippine isolates of blast fungus using two sets of rice varieties. Jpn J Breed 31:367–376

    Article  Google Scholar 

  • Kobayashi N, Yanoria MJT, Tsunematsu H, Hato H, Imbe T, Fukuta Y (2007) Development of new sets of International differential varieties for blast resistance in rice (Oryza sativa L.). JARQ 41:31–37

    Article  Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–195

    Article  CAS  PubMed  Google Scholar 

  • Kou Y, Qu ZW, Zhou B, Naqvi NI (2013) A secreted effector cofers avirulence towards Pi9-mediated broadspectrum blast resistance. Abstract, IRBC, A-21

    Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Kruger WM, Carver TLW, Zeyen RJ (2002) Effects of inhibiting phenolic biosynthesis on penetration resistance of barley isolines containing seven powdery mildew resistance genes or alleles. Physiol Mol Plant Pathol 61:41–51

    Article  CAS  Google Scholar 

  • Kumar GR, Sakthivel K, Sundaram RM, Neeraja CN, Balachandran SM, Rani NS, Viraktamath BC, Madhav MS (2010) Allele mining in crops: prospects and potentials. Biotechnol Adv 18:451–461

    Article  CAS  Google Scholar 

  • Kumari A, Das A, Devanna BN, Thakur S, Singh PK, Singh NK, Sharma TR (2013) Mining of rice blast resistance gene Pi54 shows effect of single nucleotide polymorphisms on the phenotype expression of the alleles. Eur J Plant Pathol. doi:10.1007/s10658-013-0216-5

    Google Scholar 

  • Latif MA, Rafii MY, Rahman MM, Talukder MRB (2011) Microsatellite and minisatellite markers based DNA fingerprinting and genetic diversity of blast and ufra resistant genotypes. C R Biol 334:282–289

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Costanzo S, Jia Y, Olsen K, Caicedo A (2009) Evolutionary dynamics of the genomic region around the blast resistance gene Pi-ta in AA genome Oryza species. Genetics 183:1315–1325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B (2009) The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact 22:411–420

    Article  CAS  PubMed  Google Scholar 

  • Li P, Bai B, Zhang HY, Zhou H, Zhou B (2012) Genomic organization and sequence dynamics of the AvrPiz-t locus in Magnaporthe oryzae. J Zheijang Univ Sci B Biomed Biotechnol 13:452–464

    CAS  Google Scholar 

  • Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q (2007) The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871–1880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu G, Lu G, Zeng L, Wang L (2002) Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics 267:472–480

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Li X, Wang Z et al (2003) Gene pyramiding to increase the blast resistance in rice. Mol Plant Breed 1:22–26 (in Chinese)

    CAS  Google Scholar 

  • Liu X, Lin F, Wang L, Pan Q (2007) The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176:2541–2549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu J, Wang X, Mitchell T, Hu Y, Liu X, Dai L, Wang GL (2010) Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol Plant Pathol 11:419–427

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Gerena J (2006) Mapping QTL controlling durable resistance to rice blast in the cultivar Oryzica Llanos 5. Ph.D. thesis, Universidad del Valle, Plant Pathology College of Agriculture, Cali, Colombia and Kansas State University, Manhatten

    Google Scholar 

  • Ma JH, Wang L, Feng SJ, Lin F, Xiao Y, Pan QH (2006) Identification and fine mapping of AvrPi15, a novel avirulence gene of Magnaporthe grisea. Theor Appl Genet 113:875–883

    Article  CAS  PubMed  Google Scholar 

  • Mackill DJ, Bonman JM (1992) Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology 82:746–749

    Article  Google Scholar 

  • Maher EA, Bate NJ, Ni WT, Elkind Y, Dixon RA et al (1994) Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc Natl Acad Sci U S A 91:7802–7806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCouch SR, Nelson RJ, Tohme J, Zeigler RS (1994) Mapping of blast resistance genes in rice. In: Zeigler RS, Leong SA, Teng PS (eds) Rice blast disease. CAB International, Wallingford, pp 167–186

    Google Scholar 

  • Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Asfaliza R, Latif MA (2013) Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol Biol Rep 40:2369–2388

    Article  CAS  PubMed  Google Scholar 

  • Nagai K, Fujimake H, Yokoo M (1970) Breeding of a rice variety Tordie 1 with multi-racial resistance to leaf blast. Jpn J Breed 20:7–14

    Article  Google Scholar 

  • Naoumkina MA, Zhao QA, Gallego-Giraldo L, Dai XB, Zhao PX et al (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846

    CAS  PubMed  Google Scholar 

  • Narayanan NN, Baisakh N, Vera Cruz CM, Gnanamanickam SS, Datta K, Datta SK (2002) Molecular breeding for the development of blast and bacterial blight resistance in rice cv. IR50. Crop Sci 42:2072–2079

    Article  CAS  Google Scholar 

  • Nimchuk Z, Eulgem T, Holt BE, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37:579–609

    Article  CAS  PubMed  Google Scholar 

  • Okuyama Y, Kanzaki H, Abe A et al (2011) A multi-faceted genomics approach allows the isolation of rice Pia blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J 66:467–479

    Article  CAS  PubMed  Google Scholar 

  • Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:2019–2032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park CH, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumarn P, Afjal AJ, Ning Y, Wang R, Bellizi M, Valent B, Wang GL (2012) The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase AP1P6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24:4748–4762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Q L, Xu X, Shang J, Jiang G, Pang Z, Zhou Z, Wang J, Liu Y, Li T, Li X, Xu J, Cheng Z, Zhao X, Li S, Zhu L (2013) Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopahology 103:594–599

    Article  CAS  Google Scholar 

  • Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006) The broad spectrum blast resistance gene Pi9 encodes a nucleotide-binding site leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rai AK, Kumar SP, Gupta SK, Gautam N, Singh NK, Sharma TR (2011) Functional complementation of rice blast resistance gene Pi-kh (Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. J Plant Biochem Biotechnol 20:55–65

    Article  CAS  Google Scholar 

  • Roumen EC (1992) Small differential interactions for partial resistance in rice cultivars to virulent isolates of the blast pathogen. Euphytica 64:143–148

    Article  Google Scholar 

  • RoyChowdhury M, Jia Y, Jia MH, Fjellstrom B, Cartwright R (2012) Identification of the rice blast resistance gene Pi-b in the national small grains collection. Phytopathology 102:700–706

    Article  CAS  PubMed  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L (2009) Identification of a new rice blast resistance gene, Pid3, by genome-wide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 182:1303–1311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma TR, Madhav MS, Singh BK, Shanker P, Jana TK, Dalal V, Pandit A, Singh A, Gaikwad K, Upreti HC, Singh NK (2005a) High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Mol Genet Genomics 274:569–578

    Article  CAS  PubMed  Google Scholar 

  • Sharma TR, Shanker P, Singh BK, Jana TK, Madhav MS, Gaikwad K, Singh NK, Plaha P, Rathour R (2005b) Molecular mapping of rice blast resistance gene Pi-kh in rice variety Tetep. J Plant Biochem Biotechnol 14:127–133

    Article  CAS  Google Scholar 

  • Sharma TR, Gupta YK, Thakur S, Singh PK, Upreti HC, Singh NK, Singh UD, Rathour R, Kapoor AS, Kaushik RP, Variar M, Maiti D, Mandal NP, Prashanti SK, Hanamaratti NG (2009) Allele mining for important blast resistance genes from Indian land races of rice. 6th International rice genetics symposium, Manila

    Google Scholar 

  • Sharma TR, Rai AK, Gupta SK, Singh NK (2010) Broad spectrum blast resistance gene Pi-kh designated as Pi-54. J Plant Biochem Biotechnol 19:987–989

    Google Scholar 

  • Sharma TR, Rai AK, Gupta SK, Vijayan J, Devanna BN, Ray S (2012) Rice blast management through hostplant resistance: retrospect and prospects. Agric Res 1:37–52

    Article  Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N et al (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shujie F, Ling W, JunHong MA, Fei L, QuingHua P (2007) Genetic and physical mapping of AvrPi7, a novel avirulence gene of Magnaporthe oryzae using physical position-ready makers. Chin Sci Bull 52:903–911

    Article  CAS  Google Scholar 

  • Silue D, Tharreau D, Notteghem JL (1992) Identification of Magnaporthe grisea avirulence genes to seven rice cultivars. Phytopathology 82:1462–1467

    Article  Google Scholar 

  • Singh VK, Singh A, Singh SP, Ellur RK et al (2012) Incorporation of blast resistance into ‘PRR78’, an elite basmati rice restorer line, through marker assisted backcross breeding. Field Crop Res 128:8–16

    Article  Google Scholar 

  • Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27:141–150

    Article  CAS  PubMed  Google Scholar 

  • Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B (1995) Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7:1221–1233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi A, Hayashi N, Miyao A, Hirochika H (2010) Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol 10:175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Talukder ZI, Tharreau D, Price AH (2004) Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race-specific interactions. New Phytol 162:197–209

    Article  CAS  Google Scholar 

  • Tang J, Zhu X, Wang Y, Liu L, Xu B, Li F, Fang J, Chu C (2011) Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice. Plant J 66:996–1007

    Article  CAS  PubMed  Google Scholar 

  • Tharreau D, Fudal I, Andriantsimialona D, Santoso-Utami D, Fournier E, Lebrun MH, Nott’eghem JL (2009) World population structure and migration of the rice blast fungus, Magnaporthe oryzae. In: Wang GL, Valent B (eds) Advances in genetics, genomics and control of rice blast disease. Springer Publication, Dordrecht, pp 209–215

    Chapter  Google Scholar 

  • Till BJ, Reynolds SH, Green EA, Codomo CA, Enns LC, Johnson JE (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsunematsu H, Yanoria MJT, Ebron LA, Hayashi N, Ando I, Kato H, Imbe T, Khush GS (2000) Development of monogenic lines of rice for rice blast resistance. Breed Sci 50:229–234

    Article  Google Scholar 

  • Variar M, Vera Cruz CM, Carrillo MG, Bhatt JC, Sangar RBS (2009) Rice blast in India and strategies to develop durably resistant cultivars. In: Xiaofan W, Valent B (eds) Advances in genetics, genomics and control of rice blast disease. Springer, New York, pp 359–374

    Chapter  Google Scholar 

  • Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide-binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    Article  PubMed  Google Scholar 

  • Wei T, Ou B, Li J, Zhao Y, Guo D et al (2013) Transcriptional profiling of rice early response to Magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance. PLoS One. doi:10.1371/journal.pone.0059720

    Google Scholar 

  • Wen S, Gao B (2011) Introgressing blast resistance gene Pi-9(t) into elite rice restorer Luhui17 by marker-assisted selection. Rice Genomics Genet 2:31–36

    Google Scholar 

  • Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, Zhou JM (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18:74–80

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Hayashi N, Wang CT, Kato H, Fujimura T, Kawasaki S (2008) Efficient authentic fine mapping of the rice blast resistance gene Pik-h in the Pik cluster, using new Pik-h differentiating isolates. Mol Breed 22:289–299

    Article  CAS  Google Scholar 

  • Yamada M, Kiyosawa S, Yamaguchi T, Hirano T, Kobayashi T, Kushibuchi K, Watanabe S (1976) Proposal of a new method of differentiating races of Pyricularia oryzae Cavara in Japan. Ann Phytopathol Soc Jpn 42:216–219

    Article  Google Scholar 

  • Yamasaki Y, Kiyosawa S (1996) Studies on inheritance of resistance of rice varieties to blast I. Inheritance of resistance of Japanese varieties to several strains of the fungus. Bull Natl Inst Agric Sci D 14:39–69 (in Japanese)

    Google Scholar 

  • Yang MZ, Cheng ZQ, Chen SN, Qian J, Xu LL, Huang XQ (2007) A rice blast-resistance genetic resource from wild rice in Yunnan, China. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 33:589–595

    PubMed  Google Scholar 

  • Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchia R (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–1591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet 122:1017–1028

    Article  PubMed  Google Scholar 

  • Yunoki TA, Ezuka T, Morinaka Y, Sakurai H, Shinoda et al (1970) Studies on the varietal resistance of rice to blast. IV. Variation of field resistance due to fungus strains. Bull Chugoku Natl Agric Exp Stn E6 (in Japanese, English summary), pp 21–41

    Google Scholar 

  • Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189:321–334

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact 19:1216–1228

    Google Scholar 

  • Zhou E, Jia Y, Singh P, Correll JC, Lee FN (2007) Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fung Genet Biol 44:1024–1034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyoosh Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Imam, J., Mandal, N.P., Variar, M., Shukla, P. (2016). Advances in Molecular Mechanism Toward Understanding Plant-Microbe Interaction: A Study of M. oryzae Versus Rice. In: Shukla, P. (eds) Frontier Discoveries and Innovations in Interdisciplinary Microbiology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2610-9_6

Download citation

Publish with us

Policies and ethics