Skip to main content

Methane Emission from Enteric Fermentation: Methanogenesis and Fermentation

  • Chapter
Climate Change Impact on Livestock: Adaptation and Mitigation

Abstract

Rumen fermentation of carbohydrates plays a fundamental role in ruminant metabolism as the main source of energy. Acetic, propionic and butyric acids (namely, volatile fatty acids, VFA) are the main products of the rumen fermentation of structural and nonstructural carbohydrates contained in the ruminant’s diet. The metabolic pathways involved in VFA production are strictly linked to methane emission, because hydrogen is actively produced during the fermentation of structural carbohydrates, and it is rapidly metabolised by methanogens, in order to maintain the optimal thermodynamic condition for the metabolism of the microbe consortium in the rumen. Hydrogen plays also a fundamental role in the maintenance of the equilibrium among VFA pathways and in their interconversion. In this chapter, after a brief chemical description of dietary carbohydrates, individual VFA pathways are described in order to put in evidence the thermodynamic control points of each pathway and the production of energy and reductive equivalent. Then, the relationship between hydrogen, VFA and methane production has been reviewed, considering the role of some dietary factors, the substrate competition between different metabolic pathways and the models of VFA estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alemu AW, Dijkstra J, Bannink A, France J, Kebreab E (2011) Rumen stoichiometric models and their contribution and challenges in predicting enteric methane production. Anim Feed Sci Technol 166–167:761–778

    Article  Google Scholar 

  • Ankel-Fuchs D, Hüster R, Mörschel E, Albracht SPJ, Thauer RK (1986) Structure and function of methyl-coenzyme M reductase and of factor F430 in methanogenic bacteria. Syst Appl Microbiol 7:383–387

    Article  CAS  Google Scholar 

  • Baldwin RL (1970) Energy metabolism in anaerobes. Am J Clin Nutr 23:1508–1518

    CAS  Google Scholar 

  • Baldwin RL, Allison MJ (1983) Rumen metabolism. J Anim Sci 57:461–477

    CAS  Google Scholar 

  • Bannink A, Kogut J, Dijkstra J, France J, Tamminga S, Van Vuuren AM (2000) Modelling production and portal appearance of volatile fatty acids in dairy cows. In: McNamara JP, France J, Beever D (eds) Modelling nutrient utilization in farm animals. CABI Publishing, New York

    Google Scholar 

  • Bannink A, Kogut J, Dijkstra J, France J, Kebreab E, Van Vuuren AM, Tamminga S (2006) Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J Theor Biol 238:36–51

    Article  CAS  Google Scholar 

  • Bannink A, France J, Lopez S, Gerrits WJJ, Kebreab E, Tamminga S, Dijkstra J (2008) Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Anim Feed Sci Technol 143:3–26

    Article  Google Scholar 

  • Boadi D, Benchaar C, Chiquette J, Masse D (2004) Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can J Anim Sci 84:319–335

    Article  Google Scholar 

  • Chesson A, Forsberg CW (1997) Polysaccharide degradation by rumen microorganism. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Blackie, London

    Google Scholar 

  • Christophersen CT, Wright ADG, Vercoe PE (2008) In vitro methane emission and acetate:propionate ratio are decreased when artificial stimulation of the rumen wall is combined with increasing grain diets in sheep. J Anim Sci 86:384–389

    Article  CAS  Google Scholar 

  • Demeyer DI (1991) Quantitative aspects of microbial metabolism in the rumen and hindgut. In: Jouany P (ed) Rumen microbial metabolism and ruminant digestion. INRA Editions, Paris

    Google Scholar 

  • Ellis JL, Dijkstra J, Kebreab E, Bannink A, Odongo NE, Mcbride BW, France J (2008) Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. J Agric Sci 146:213–233

    Article  CAS  Google Scholar 

  • Ellis JL, Bannink A, France J, Kebreab E, Dijkstra J (2010) Evaluation of enteric methane prediction equations for dairy cows used in whole farm models. Glob Change Biol 16:3246–3256

    Article  Google Scholar 

  • Fonty G, Joblin K, Chavarot M, Roux R, Naylor G, Michallon F (2007) Establishment and development of ruminal hydrogenotrophs in methanogen- free lambs. Appl Environ Microbiol 73:6391–6403

    Article  CAS  Google Scholar 

  • France J, Dijkstra J (2005) Volatile fatty acid production. In: Dijkstra J, Forbes JM, France J (eds) Quantitative aspects of ruminant digestion and metabolism. CAB International, Wallingford

    Google Scholar 

  • Gibson GR, Macfariane GT, Cummings JH (1993) Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut 34:437–439

    Article  CAS  Google Scholar 

  • Giger-Reverdin S, Morand-Fehr P, Tran G (2003) Literature survey of the influence of dietary fat composition on methane production in dairy cattle. Livest Prod Sci 82:73–79

    Article  Google Scholar 

  • Hackmann TJ, Spain JN (2010) Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J Dairy Sci 93:1320–1334

    Article  CAS  Google Scholar 

  • Hespell RB (1988) Microbial digestion of hemicelluloses in the rumen. Microbiol Sci 5:362–365

    CAS  Google Scholar 

  • Janssen PH (2010) Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol 160:1–22

    Article  CAS  Google Scholar 

  • Jenkins TC, Wallace RJ, Moate PJ, Mosley EE (2008) Board-invited review: recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci 86:397–412

    Article  CAS  Google Scholar 

  • Jeyanathan J, Martin C, Morgavi DP (2013) The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal 8:250–261

    Article  Google Scholar 

  • Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492

    CAS  Google Scholar 

  • Klieve AV, Ouwerkerk D (2007) Comparative greenhouse gas emissions from herbivores. In: Proceedings of the 7th international symposium on the nutrition of herbivores, Beijing, China pp 487–500

    Google Scholar 

  • Kolver ES, de Veth MJ (2002) Prediction of ruminal pH from pasture-based diets. J Dairy Sci 85:1255–1266

    Article  CAS  Google Scholar 

  • Kotarski SF, Waniska RD, Thurn KK (1992) Starch hydrolysis by the ruminal microflora. J Nutr 122:178–190

    CAS  Google Scholar 

  • Le Van TD, Robinson JA, Ralph J, Greening RC, Smolenski WJ, Leedle JAZ, Schaefer DM (1998) Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis. Appl Environ Microbiol 64:3429–3436

    Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Martin SA (1998) Manipulation of ruminal fermentation with organic acids: a review. J Anim Sci 76:3123–3132

    CAS  Google Scholar 

  • McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA (1995) Animal nutrition, 5th edn. Longman, Harlow

    Google Scholar 

  • Mertens DR (1992) Nonstructural and structural carbohydrates. In: Van Horn HH, Wilcox CJ (eds) Large dairy herd management. American Dairy Science Association, Champaign

    Google Scholar 

  • Mills JAN, Kebreab E, Yates CM, Crompton LA, Cammell SB, Dhanoa MS, Agnew RE, France J (2003) Alternative approaches to predicting methane emissions from dairy cows. J Anim Sci 81:3141–3150

    CAS  Google Scholar 

  • Morgavi DP, Forano E, Martin C, Newbold CJ (2010) Microbial ecosystem and methanogenesis in ruminants. Animal 4:1024–1036

    Article  CAS  Google Scholar 

  • Morrison M, Miron J (2000) Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins? FEMS Microbiol Lett 185:109–115

    Article  CAS  Google Scholar 

  • Moss AR, Jouany JP, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann Zootech 49:231–254

    Article  CAS  Google Scholar 

  • Nozière P, Ortigues-Marty I, Loncke C, Sauvant D (2010) Carbohydrate quantitative digestion and absorption in ruminants: from feed starch and fibre to nutrients available for tissues. Animal 4:1057–1074

    Article  Google Scholar 

  • Offner A, Bach A, Sauvant D (2003) Quantitative review of in situ starch degradation in the rumen. Anim Feed Sci Technol 106:81–93

    Article  CAS  Google Scholar 

  • Romano AH, Conway T (1996) Evolution of carbohydrate metabolic pathways. Res Microbiol 147:448–455

    Article  CAS  Google Scholar 

  • Russell JB (2002) Rumen microbiology and its role in ruminant nutrition, 1st edn. Cornell University, Ithaca, NY, US

    Google Scholar 

  • Russell JB, Wallace RJ (1997) Energy-yielding and energy-consuming reactions. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Blackie Academic and Professional, London

    Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Marjory Stephenson Prize Lecture. Microbiology 144:2377–2406

    Article  CAS  Google Scholar 

  • Ungerfeld EM, Kohn RA (2006) The role of thermodynamics in the control of ruminal fermentation. In: Sejrsen K, Hvelplund T, Nielsen MO (eds) Ruminant physiology: digestion, metabolism and impact of nutrition on gene expression, immunology and stress. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  • Van Kessel JAS, Russell JB (1996) The effect of pH on ruminal methanogenesis. FEMS Microbiol Ecol 20:205–210

    Article  Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Cornell University Press, Ithaca

    Google Scholar 

  • Weimer PJ (1992) Cellulose degradation by ruminal microorganisms. Crit Rev Biotechnol 12:189–223

    Article  CAS  Google Scholar 

  • Zebeli Q, Mansmann D, Steingass H, Ametaj BN (2010) Balancing diets for physically effective fibre and ruminally degradable starch: a key to lower the risk of sub-acute rumen acidosis and improve productivity of dairy cattle. Livest Sci 127:1–10

    Article  Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogens, ecology, physiology, biochemistry and genetics. Chapman and Hall, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Mele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Buccioni, A., Cappucci, A., Mele, M. (2015). Methane Emission from Enteric Fermentation: Methanogenesis and Fermentation. In: Sejian, V., Gaughan, J., Baumgard, L., Prasad, C. (eds) Climate Change Impact on Livestock: Adaptation and Mitigation. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2265-1_11

Download citation

Publish with us

Policies and ethics