Skip to main content

Flow Regime Prediction Using Artificial Neural Networks for Air-Water Flow Through 1–5 mm Tubes in Horizontal Plane

  • Conference paper
  • First Online:
Information Systems Design and Intelligent Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 339))

  • 1734 Accesses

Abstract

Artificial Neural Network (ANN) based techniques for the classifications of flow regimes in air-water flow through 1–5 mm tubes are presented. 218 data points are based on the experimental investigation in 3 and 4 mm tubes and 2114 data points from various experimental results from the published literature for air-water two-phase flow in small diameter tubes have been used. Five different well known artificial neural network models have been used to predict the flow regime. The ANN model based on Radial Basis Function and Principal Component Analysis gives better predictability over the other networks used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

N:

Number of data points

\( x \) :

Input value

\( y \) :

Output value

MSE:

Mean Square Error, \( \frac{1}{N}\sum\nolimits_{i = 1}^{N} {(x_{i} - y_{i} )^{2} } \)

References

  1. Suo, M., Griffith, P.: Two-phase flow in capillary tubes. J. Basic Eng. 86, 576–582 (1964)

    Article  Google Scholar 

  2. Barnea, D., Luninski, Y., Taitel, Y.: Flow pattern in horizontal and vertical two phase flow in small diameter pipes. Can. J. Chem. Eng. 61, 617–620 (1983)

    Article  Google Scholar 

  3. Barajas, A.M., Panton, R.L.: The effect of contact angle on two-phase flow in capillary tubes. Int. J. Multiph. Flow. 19, 337–346 (1993)

    Article  MATH  Google Scholar 

  4. Fukano, T., Kariyasaki, A.: Characteristics of gas–liquid two-phase flow in a capillary. Nucl. Eng. Design. 141, 59–68 (1993)

    Article  Google Scholar 

  5. Mishima, K., Hibiki, T., Nishihara, H: Some characteristics of air–water two-phase flow in small diameter tubes. In: Proceedings of the 2nd International Conference of Multiphase Flow, vol. 4, 3–7, pp. 39–46, Tokyo, Japan (1995)

    Google Scholar 

  6. Mishima, K., Hibiki, T.: Some characteristics of air–water two-phase flow in small diameter vertical tubes. Int. J. Multiph. Flow. 22, 703–712 (1996)

    Article  MATH  Google Scholar 

  7. Triplett, K.A., Ghiaasiaan, S.M., Adbel-Khalik, S.I., Sadowski, D.L.: Gas–liquid two-phase flow in microchannels. Part I: two-phase flow patterns. Int. J. Multiph. Flow 25, 377–394 (1999)

    Article  MATH  Google Scholar 

  8. Coleman, J.W., Garimella, S.: Characteristics of two-phase patterns in small diameter round and rectangular tubes. Int. J. Heat Mass Trans. 42, 2869–2881 (1999)

    Article  Google Scholar 

  9. Yang, C.Y., Shieh, C.C.: Flow pattern of air–water and two-phase R-134a in small circular tubes. Int. J. Multiph. Flow. 27, 1163–1177 (2001)

    Article  MATH  Google Scholar 

  10. Zhao, T.S., Bi, Q.C.: Co-current air–water two-phase flow patterns in vertical triangular microchannels. Int. J. Multiph. Flow. 27, 765–782 (2001)

    Article  MATH  Google Scholar 

  11. Chen, W.L., Twu, M.C., Pan, C.: Gas-liquid two-phase flow in micro-channel. Int. J. Multiph. Flow. 28, 1235–1247 (2002)

    Article  MATH  Google Scholar 

  12. Ide, H., Kariyasaki, A., Fukano, T.: Fundamental data on gas—liquid two-phase flow in microchannels. Int. J. Therm. Sci. 46, 519–530 (2007)

    Article  Google Scholar 

  13. Venkatesan, M., Das, S.K., Balakrishnan, A.R.: Effect of tube diameter on two-phase flow patterns in mini tubes. Can. J. Chem. Eng. 88, 936–944 (2010)

    Article  Google Scholar 

  14. Bar, N., Das, S.K.: Prediction of flow regime for air-water flow in circular micro channels using ANN. Procedia Technol. 10, 242–252 (2013)

    Article  Google Scholar 

  15. Baker, O.: Simultaneous flow of oil and gas. Oil and Gas J. 53, 185–195 (1954)

    Google Scholar 

  16. Mandhane, J.M., George, G.A., Aziz, K.A.: Flow pattern map for gas—liquid flow in horizontal pipes. Int. J. Multiph. Flow. 1, 537–553 (1974)

    Article  Google Scholar 

  17. Taitel, Y., Dukler, A.E.: A model for predicting flow regime transitions in horizontal and near horizontal gas—liquid flow. AIChE J. 22, 47–55 (1976)

    Article  Google Scholar 

  18. Weisman, J., Duncan, D., Gibson, J., Crawford, T.: Effects of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines. Int. J. Multiph. Flow. 5, 437–462 (1979)

    Article  Google Scholar 

  19. Taitel, Y.: Flow pattern transition in two phase flow, keynote lecture. In: Proceedings of the 9th International Heat Transaction Conference 19–24 August, No. KN-14, pp. 237–254, Jerusalem, Israel (1990)

    Google Scholar 

  20. Himmelblau, D.M.: Application of artificial neural network in chemical engineering. Korean J. Chem. Eng. 17, 373–392 (2000)

    Article  Google Scholar 

  21. Cong, T., Su, G., Qiu, S., Tian, W.: Applications of ANNs in flow and heat transfer problems in engineering: a review work. Prog. Nucl. Energy 62, 54–71 (2013)

    Article  Google Scholar 

  22. Cai, S., Toral, H., Qiu, J., Archer, J.S.: Neural network based objective flow regime Identification in air-water two phase flow. Can. J. Chem. Eng. 72, 440–445 (1994)

    Article  Google Scholar 

  23. Bar, N., Ghosh, T.K., Das, S.K., Biswas, M.N.: Air-water flow through 3 mm and 4 mm Tubes—experiment and ANN prediction. Artif. Intell. Syst. Machine Learn. 3(8), 531–537 (2011)

    Google Scholar 

  24. Bar, N., Biswas, M.N., Das, S.K.: Prediction of pressure drop using artificial neural network for gas non-newtonian liquid flow through piping components. Ind. Eng. Chem. Res. 49, 9423–9429 (2010)

    Article  Google Scholar 

  25. Bar, N., Das, S.K.: Comparative study of friction factor by prediction of frictional pressure drop per unit length using empirical correlation and ANN for gas-non-newtonian liquid flow through 180° circular bend. Int. Rev. Chem. Eng. 3(6), 628–643 (2011)

    Google Scholar 

  26. Bar, N., Das, S.K.: Gas-non-newtonian liquid flow through horizontal pipe—gas holdup and frictional pressure drop prediction using multilayer perceptron. Am. J. Fluid Dyn. 2(3), 7–16 (2012)

    Article  Google Scholar 

  27. Bar, N., Das, S.K.: Frictional pressure drop for gas-non-newtonian liquid flow through 90° and 135° circular bend: prediction using empirical correlation and ANN. Int. J. Fluid Mech. Res. 39(5), 416–437 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirjhar Bar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Bar, N., Biswas, M.N., Das, S.K. (2015). Flow Regime Prediction Using Artificial Neural Networks for Air-Water Flow Through 1–5 mm Tubes in Horizontal Plane. In: Mandal, J., Satapathy, S., Kumar Sanyal, M., Sarkar, P., Mukhopadhyay, A. (eds) Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing, vol 339. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2250-7_82

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2250-7_82

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2249-1

  • Online ISBN: 978-81-322-2250-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics