Skip to main content

Toxic Responses of the Plasma Glutathione Peroxidase (GSH-Px)

  • Chapter
  • First Online:
Book cover Toxic Effects of Mercury
  • 1330 Accesses

Abstract

Selenium (Se) acts as an antagonist to the toxic effects of many heavy metals, including mercury (Yoneda and Suzuki 1997; Falnoga and Tusek-Znidaric 2007). This essential trace element (Combs and Combo 1984) is important in many biological functions, since it is a cofactor in selenium-containing enzymes, especially in antioxidant enzymes such as glutathione peroxidase (GSH-Px) (Rotruck et al. 1973). This enzyme is effective in catalyzing the decomposition of hydrogen peroxides and lipid peroxides. When GSH-Px activity is inhibited, peroxides formed during oxidative stress can propagate cell damage. Measurement of this enzyme activity is an indirect and noninvasive method that could be used to assess oxidant stress. The activity of this enzyme has been used to assess body selenium status and nutritional requirements (Levander 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson HR, Anderson O (1993) Effects of dietary ά-tocopherol and β-carotene on lipid peroxidation induced by methylmercuric chloride in mice. Pharmacol Toxicol 73:192–201

    Article  Google Scholar 

  • Bulat P, Dujic I, Potkonjak B, Vidakovic A (1998) Activity of glutathione peroxidase and superoxide dismutase in workers occupationally exposed to mercury. Int Arch Occup Environ Health 71:S37–S39

    PubMed  Google Scholar 

  • Burk RF, Foster KA, Greenfield PM, Kiker KW, Hannon JP (1974) Binding of simultaneously administered inorganic selenium and mercury to a rat plasma protein. Proc Soc Exp Biol Med 145(3):782–785

    Article  CAS  PubMed  Google Scholar 

  • Chen RW, Whanger PD, Fang SC (1974) Diversion of mercury binding in rat tissues by selenium: a possible mechanism of protection. Pharmacol Res Commun 6(6):571–579

    Article  CAS  PubMed  Google Scholar 

  • Chen RW, Lacy VL, Whanger PD (1975) Effect of selenium on methylmercury binding to subcellular and soluble proteins in rat tissues. Res Commun Pathol Pharmacol 12(2):297–308

    CAS  Google Scholar 

  • Chen C, Qu L, Li B, Xing L, Jia G, Wang T, Gao Y, Zhang P, Li M, Chen W, Chai Z (2005) Increased oxidative DNA damage, as assessed by urinary 8-hydroxy-2-deoxyguanosine concentrations, and serum redox status in persons exposed to mercury. Clin Chem 51:759–767

    Article  CAS  PubMed  Google Scholar 

  • Combs GF, Combo SB (1984) The nutritional biochemistry of selenium. Annu Rev Nutr 4:257–280

    Article  CAS  PubMed  Google Scholar 

  • Denise G, Gustavo RMB, Juliana V, Lusania MGA, Jose Pedro FA, Solange CG, Fernando B (2008) Low levels of methylmercury induce DNA damage in rats: protective effects of selenium. Arch Toxicol 83:249–254

    Google Scholar 

  • El-Begearmi MM, Sunde ML, Ganther HE (1977) A mutual protective effect of mercury and selenium in Japanese quail. Poult Sci 56(1):313–322

    Article  CAS  PubMed  Google Scholar 

  • Falnoga I, Tusek-Znidaric M (2007) Selenium-mercury interactions in man and animals. Biol Trace Elem Res 119:212–220

    Article  CAS  PubMed  Google Scholar 

  • Froseth JA, Piper RC, Carlson JR (1974) Relationship of dietary selenium and oral methylmercury to blood and tissue selenium and mercury concentrations and deficiency-toxicity signs in swine. Fed Proc 33:660

    Google Scholar 

  • Ganther HE (1975) Selenoproteins. Chem Scr 8A:79

    CAS  Google Scholar 

  • Ganther HE, Wagner PA, Sunde ML (1973) Protective effects of selenium against heavy metal toxicities. In: Hemphill D (ed) Trace substances in environmental health, vol 6. University of Missouri, Columbia, pp 247–252

    Google Scholar 

  • Girardi G, Elias MM (1995) Mercury chloride effects on rat renal redox enzymes activities: SOD protection. Free Radic Biol Med 18:61–66

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra WG (1975) Biochemical function of selenium and its relation to vitamin E. Fed Proc 34(11):2083–2089

    CAS  PubMed  Google Scholar 

  • Levander OA (1991) Scientific rationale for the 1989 recommended dietary allowances for selenium. J Am Diet Assoc 91:1572–1576

    CAS  PubMed  Google Scholar 

  • MacPherson A, Barclay MNI, Scott R, Yates RWS (1997) Loss of Canadian wheat lowers selenium intake and status of the Scottish population. In: Fischer PWF, L’Abbe MR, Cockell KA, Gibson RS (eds) Trace elements in man and animals 9: proceedings of the ninth international symposium on trace elements in man and animals. NRC Research Press, Ottawa, pp 203–205

    Google Scholar 

  • National Academy Press (2000) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes of the Food and Nutrition Board, Institute of Medicine, the National Academics with Health Canada. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington DC

    Google Scholar 

  • Ohi G, Nishigaki S, Seki H, Tamura Y, Maki T (1976) Efficacy of selenium in tuna and selenite in modifying methylmercury intoxication. Environ Res 12(1):49–58

    Article  CAS  PubMed  Google Scholar 

  • Prohaska JR, Ganther HE (1977) Interactions between selenium and methylmercury in rat brain. Chem Biol Interact 16(2):155–167

    Article  CAS  PubMed  Google Scholar 

  • Rayman M (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  PubMed  Google Scholar 

  • Rotruck IT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hockstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  • Tran D, Moody AJ, Fisher AS, Foulkes ME, Jha AN (2007) Protective effects of selenium on mercury-induced DNA damage in mussel haemocytes. Aquat Toxicol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Vendemiale G, Grattagliano I, Altomare E (1999) An update on the role of free radicals and antioxidant defense in human disease. Int J Clin Lab Res 29:49–55

    Article  CAS  PubMed  Google Scholar 

  • Wagner PA (1975) Studies on the interaction of selenium with silver and methylmercury in the rat. Ph.D. thesis, University of Wisconsin, Madison

    Google Scholar 

  • Wagner PA, Hoekstra WG, Ganther HE (1975) Alleviation of silver toxicity by selenite in the rat in relation to tissue glutathione peroxidase. Proc Soc Exp Biol Med 148(4):1106–1110

    Article  CAS  PubMed  Google Scholar 

  • Welsh S (1974) Physiological effects of methylmercury toxicity: interaction of methylmercury with selenium, tellurium and vitamin E. Ph.D. thesis, University of Maryland, College Park, MD

    Google Scholar 

  • WHO, Food and Agriculture Organization, International Atomic Energy Agency Expert Group (1996) Trace elements in human nutrition and health. WHO, Geneva

    Google Scholar 

  • Yoneda S, Suzuki KT (1997) Equimolar Hg-Se complex binds to selenoprotein P. Biochem Biophys Res Commun 231:7–11

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Nabi, S. (2014). Toxic Responses of the Plasma Glutathione Peroxidase (GSH-Px). In: Toxic Effects of Mercury. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1922-4_19

Download citation

Publish with us

Policies and ethics