Skip to main content

In Vivo Investigations of Signal-Transduction Systems in Affective Disorders by Magnetic Resonance Spectroscopy

  • Conference paper
Signal Transduction in Affective Disorders

Abstract

In vivo nuclear magnetic resonance spectroscopy (MRS) is a noninvasive tool that can detect various molecules at around millimolar concentrations in living human organs. The nuclei of many species of atoms, such as 1H, 7Li, and 31P, have magnetic properties and can be used for in vivo MRS. Because the principles of MRS are complicated and not easily summarized, only a brief introduction is given here. For details, see other review articles (Nasrallah and Pettegrew 1995; Kato et al. in press).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bayer S, Laubenberger J, Haussinger D, Hennig J, Langer M (1996) Correlation of cerebral metabolites with clinical findings in hepatic encephalopathy observed by 1H-MRS (abstract). Proceedings of the International Society of Magnetic Resonance in Medicine ( ISMRM ), Berkeley, 412

    Google Scholar 

  • Behar K, Rothman D, Petersen K, Hooten M, Namanworth S, Petroff OAC, Shulman G, White J, Petrakis I, Charney D, Krystal J (1996) Cortical GABA levels are reduced in localized -NMR spectra of alcoholic and hepatic encephalopathy patients. Proceedings of the International Society of Magnetic Resonance in Medicine, Berkeley, 408

    Google Scholar 

  • Bostwick JR, Landers DW, Craford G, Lau K, Appel SH (1989) Purification and characterization of a central cholinergic enhancing factor from rat brain: its identity as phosphoethanolamine. J Neurochem 53: 448–458

    Article  PubMed  CAS  Google Scholar 

  • Bruhn H, Stoppe G, Staedt J, Merboldt KD, Hanicke W, Frahm J (1993) Quantitative proton MRS in vivo shows cerebral myo-inositol and cholines to be unchanged in manic-depressive patients treated with lithium (abstract). Proceedings of the Society of Magnetic Resonance in Medicine, Berkeley, 1543

    Google Scholar 

  • Cerdan S, Hansen CA, Johannsen R, Inubushi T, Williamson JR (1986) Nuclear magnetic resonance spectroscopic analysis of myo-inositol phosphates including inositol 1,3,4,5-tetrakisphosphate. J Biol Chem 261: 14676–14680

    PubMed  CAS  Google Scholar 

  • Charles HC, Lazeyras F, Krishnan KRR, Boyko OB, Payne M, Moore D (1994) Brain choline in depression: in vivo detection of potential pharmacodynamic effects of antidepressant therapy using hydrogen localized spectroscopy. Prog Neuro- Psychopharmacol Biol Psychiatry 18: 1121–1127

    Article  CAS  Google Scholar 

  • Chiu TM, Woods BT (1995) MRS and levels of free fatty acid in brain after electrocon-vulsive therapy. In: Nasallah HA, Pettegrew JW (eds) NMR spectroscopy in psychiatric brain disorders. American Psychiatric Press, Washington, DC, pp 235–252

    Google Scholar 

  • Christensen JD, Renshaw PF, Stoll AL, Lafer B, Fava M (1994) 31P-spectroscopy of the basal ganglia in major depression (abstract). Proceedings of Society of Magnetic Resonance in Medicine, Berkeley, 608

    Google Scholar 

  • Cohen BM, Renshaw PF, Stoll AL, Wortman RJ, Yorgelun-Todd D, Babb SM (1995) Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy study. JAMA 274: 902–907

    Google Scholar 

  • Crozier S, Brereton IM, Rose SE, Field J, Shannon GF, Doddrell DM (1990) Application of volume-selected, two-dimensional multiple-quantum editing in vivo to observe cerebral metabolities. Magn Reson Med 16: 496–502

    Article  PubMed  CAS  Google Scholar 

  • Degani H, DeJordy JO, Salomon Y (1991) Stimulation of cAMP and phos- phomonoester production by melanotropin in melanoma cells: 31P-NMR studies. Proc Natl Acad Sci USA 88: 1506–1510

    Article  PubMed  CAS  Google Scholar 

  • Djuricic B, Olson SR, Assaf HM, Whittingham TS, Lust WD, Drewes LR (1991) Formation of free choline in brain tissue during in vitro energy deprivation. J Cereb Blood Flow Metab 11: 308–313

    Article  PubMed  CAS  Google Scholar 

  • El-Mallakh RS (1996) Lithium. Actions and mechanisms. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Felber SR, Pycha R, Hummer M, Aichner FT, Fleischhacker WW (1993) Localized proton and phosphorus magnetic resonance spectroscopy following electroconvulsive therapy. Biol Psychiatry 33: 651–654

    Article  PubMed  CAS  Google Scholar 

  • Inubushi T, Morikawa S, Kito K, Arai T (1993) -detected in vivo 13C-NMR spectroscopy and imaging at 2T magnetic field: efficient monitoring of 13C-labeled metabolites in the rat brain derived from l-13C-glucose. Biochem Biophys Res Commun 191: 866–872

    Google Scholar 

  • Kato T, Shioiri T, Takahashi S, Inubushi T (1991) Measurement of phosphoinositide metabolism in bipolar patients using in vivo 31P-MRS. J Affect Disord 22: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Takahashi S, Inubushi T (1992) Brain lithium concentrations by 7Li and *H magnetic resonance spectroscopy in bipolar disorder. Psychiatry Res Neuroimaging 45: 53–63

    Article  CAS  Google Scholar 

  • Kato T, Takahashi S, Shioiri T, Inubushi T (1993) Alterations in brain phosphorus metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 27: 53–60

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Takahashi S, Inubushi T (1994) Brain lithium concentration measured with lithium-7 magnetic resonance spectroscopy: A review. Lithium 5: 75–81

    Google Scholar 

  • Kato T, Shioiri T, Murashita J, Hamakawa H, Takahashi Y, Inubushi T, Takahashi S (1995) Lateralized abnormality of high energy phosphate and bilateral reduction of phosphomonoester measured by 31P-MRS of the frontal lobes in schizophrenia. Psychiatry Res Neuroimaging 61: 151–160

    Article  CAS  Google Scholar 

  • Kato T, Murashita J, Shioiri T, Hamakawa H, Inubushi T (1996a) Effect of photic stimulation on energy metabolism in the human brain measured by 31P-MR spectroscopy. J Neuropsychiatry Clin Neurosci 8: 417–422

    PubMed  CAS  Google Scholar 

  • Kato T, Hamakawa H, Shioiri T, Murashita J, Takahashi Y, Takahashi S, Inubushi T (1996b) Choline-containing compounds detected by proton magnetic resonance spectroscopy in the basal ganglia in bipolar disorder. J Psychiatry Neurosci 21:248–254

    PubMed  CAS  Google Scholar 

  • Kato T, Inubushi T, Kato N (in press) Magnetic resonance spectroscopy in affective disorders. J Neuropsychiatry Clin Neurosci

    Google Scholar 

  • Keshavan MS, Pettegrew JW, Panchlingam K (1995) MRS in the study of psychoses: psychopharmacological studies. In: Nasrallah HA, Pettegrew JW (eds) NMR spectroscopy in psychiatric brain disorders. American Psychiatric Press, Washington, DC, pp 131–146

    Google Scholar 

  • Kleis R, Ross BD, Farrow NA, Ackerman Z (1992) Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-l MR spectroscopy. Radiology 182: 19–27

    Google Scholar 

  • Li SJ, Prost RW, Tan SG, Charles HC (1993) The decrease in phosphodiesters during photic stimulation in human primary visual cortex. Proceedings of the Society of Magnetic Resonance in Medicine, 65

    Google Scholar 

  • Mikuni M, Kusumi I, Kagaya A, Kuroda Y, Mori H, Takahashi K (1991) Increased 5HT-2 receptor function as measured by serotonin-stimulated phosphoinositide hydrolysis in platelets of depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 15: 49–61

    Article  PubMed  CAS  Google Scholar 

  • Moore CM, Christensen JD, Lafer B, Fava M, Renshaw PF (1997) Lower levels of nucleoside triphosphate in the basal ganglia of depressed subjects: a phosphorus-31 magnetic resonance spectroscopy study. Am J Psychiatry 154: 116–118

    PubMed  CAS  Google Scholar 

  • Nasrallah HA, Pettegrew JW (eds) (1995) NMR spectroscopy in psychiatric brain disorders. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Petroff OAC, Rothman DL, Behar KL, Mattson RH (1995) Initial observations on effect of vigabatrin on in vivo H spectroscopic measurements of y-aminobutyric acid, glutamate, glutamine in human brain. Epilepsia 36: 457–464

    Google Scholar 

  • Pianet I, Canioni P, Labouesse J, Merle M (1992) p-Adrenergic stimulation of C6 glioma cells: effects of cAMP overproduction on cellular metabolites. A multi- nuclear NMR study. Eur J Biochem 209: 707–715

    Google Scholar 

  • Podo F, Carpinelli G, DiVito M, Giannini M, Proietti E, Fiers W, Gresser L, Belardelli F (1987) Nuclear magnetic resonance analysis of tumor necrosis factor-induced alterations of phospholipid metabolites and pH in Friend leukemia cell tumors and fibrosarcomas in mice. Cancer Res 47: 6481–6489

    PubMed  CAS  Google Scholar 

  • Preece NE, Gadian DG, Houseman J, Williams SR (1992) Lithium-induced modulation of cerebral inositol phosphate metabolism in the rat. A multinuclear magnetic resonance study in vivo. Lithium 3: 287–297

    Google Scholar 

  • Prichard JW, Petroff OAC, Ogino T, Shulman RG (1987) Cerebral lactate elevation by electroshock: a H magnetic resonance study. Ann NY Acad Sci 508: 54–63

    Article  PubMed  CAS  Google Scholar 

  • Prost RW, Mark L, Mewissen M, Li SJ (1997) Detection of glutamate/glutamine resonances by *H magnetic resonance spectroscopy at 0.5 Tesla. Magn Reson Med 37: 615–618

    Article  PubMed  CAS  Google Scholar 

  • Renshaw PF, Summers JJ, Renshaw CE, Hines KG, Leigh JS Jr (1986) Changes in the P-31 NMR spectra of cats receiving lithium chloride systemically. Biol Psychiatry 21: 694–698

    Article  PubMed  CAS  Google Scholar 

  • Renshaw PF, Schnall MD, Leigh JS Jr (1987) In vivo P-31 NMR spectroscopy of agonist-stimulated phosphatidylinositol metabolism in cat brain. Magn Reson Med 4: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Renshaw PF, Lafer B, Christensen JD, Stoll AL, Rothschild A, Fava M, Rosenbaum JF, Cohen BM (1994) Proton MRS of the basal ganglia in major depression (ab-stract). Biol Psychiatry 35: 685

    Article  Google Scholar 

  • Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW (1992a) Effect of photic stimulation on human visual cortex lactate and phosphates using *H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 12: 584–592

    Article  PubMed  CAS  Google Scholar 

  • Sappey-Marinier D, Calabrese G, Hetherington HP, Fisher SN, Deicken R, VanDyke C, Fein G, Weiner MW (1992b) Proton magnetic resonance spectroscopy of human brain: applications to normal white matter, chronic infarction, and MR imaging white matter signal hyperintensities. Magn Reson Med 26: 313–327

    Article  PubMed  CAS  Google Scholar 

  • Silverstone PH, Hanstock CC, Fabian J, Staab R, Allen PS (1996) Chronic lithium does not alter human myo-inositol or phosphomonoester concentrations as measured by 1H- and 31P-MRS. Biol Psychiatry 40: 235–246

    Article  PubMed  CAS  Google Scholar 

  • Soares JC, Mallinger AG (1996) Abnormal phosphatidylinositol ( Pl)-signaling in bipolar disorder. Biol Psychiatry 39: 461–462

    Google Scholar 

  • Stanley JA, Drost DJ, Williamson PC, Carr TJ (1995) In vivo proton MRS study of glutamate and schizophrenia. In: Nasrallah HA, Pettegrew JW (eds) NMR spectros-copy in psychiatric brain disorders. American Psychiatric Press, Washington DC, pp 21–44

    Google Scholar 

  • Stoll AL, Sachs GS, Cohen BM, Lafer B, Christensen JD, Renshaw PF (1996) Choline in the treatment of rapid-cycling bipolar disorder: clinical and neurochemical findings in lithium-treated patients. Biol Psychiatry 40: 382–388

    Article  PubMed  CAS  Google Scholar 

  • Woods BT, Chiu TM (1990) In vivo H spectroscopy of the human brain following electroconvulsive therapy. Ann Neurol 28: 745–749

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Tokyo

About this paper

Cite this paper

Kato, T. (1998). In Vivo Investigations of Signal-Transduction Systems in Affective Disorders by Magnetic Resonance Spectroscopy. In: Ozawa, H., Saito, T., Takahata, N. (eds) Signal Transduction in Affective Disorders. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68479-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68479-4_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68481-7

  • Online ISBN: 978-4-431-68479-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics