Skip to main content

The Evolution of the Parietal Lobes in the Genus Homo

  • Chapter
  • First Online:
Digital Endocasts

Abstract

The parietal areas have always been of major interest in paleoneurology because of their remarkable variation among hominids. In neuroanatomy, difficulties in defining their blurred boundaries and their complex functions have delayed a proper quantitative study of their organization and evolution. Paleoneurological evidence indicates the upper parietal cortex, including its deep medial folds, as a probable area of evolutionary change. In modern humans, the intraparietal sulcus shows species-specific features when compared with other primates. The size and proportions of the precuneus represent a determining factor of variability among adults, and a major difference between human and chimpanzee midsagittal brain morphology. This medial element is a relevant connectivity hub of the whole brain, is central for the frontoparietal system, and has an important role in the default mode network. When compared with extinct human species, modern humans display a marked enlargement of the parietal bone and of the parietal lobes, inducing the longitudinal bulging of the whole parietal surface. This morphological change is very similar to the pattern associated, among living humans and between humans and apes, with the size variation of the precuneus. It remains to be understood to what extent such evolutionary variations are due to genetic selection or to environmental and physiological factors. These cortical areas are involved in many complex cognitive functions, but most of all they are central for visuospatial integration, coordinating body management, the eye-hand system, the interaction between body and environment, and the integration between body and inner cognitive levels including self-awareness, egocentric memory, social perception, and mental imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackerley R, Kavounoudias A (2015) The role of tactile afference in shaping motor behaviour and implications for prosthetic innovation. Neuropsychologia 79:192–205

    Article  Google Scholar 

  • Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118:341–358

    Article  Google Scholar 

  • Amano H, Kikuchi T, Morita Y, Kondo O, Suzuki H, Ponce de León MS, Zollikofer C, Bastir M, Stringer C, Ogihara N (2015) Virtual reconstruction of the Neanderthal Amud 1 cranium. Am J Phys Anthropol 158:185–197

    Article  Google Scholar 

  • Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Annu Rev Neurosci 25:189–220

    Article  Google Scholar 

  • Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330

    Article  Google Scholar 

  • Ansari D (2008) Effects of development and enculturation on number representation in the brain. Nat Rev Neurosci 9:278–291

    Article  Google Scholar 

  • Basten U, Hilger K, Fiebach CJ (2015) Where smart brains are different: a quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence 51:10–27

    Article  Google Scholar 

  • Battaglia-Mayer A, Ferraina S, Mitsuda T, Marconi B, Genovesio A, Onorati P, Lacquaniti F, Caminiti R (2000) Early coding of reaching in the parietooccipital cortex. J Neurophysiol 83:2374–2391

    Article  Google Scholar 

  • Battaglia-Mayer A, Caminiti R, Lacquaniti F, Zago M (2003) Multiple levels of representation of reaching in the parieto-frontal network. Cereb Cortex 13:1009–1022

    Article  Google Scholar 

  • Berryhill ME, Chein J, Olson IR (2011) At the intersection of attention and memory: the mechanistic role of the posterior parietal lobe in working memory. Neuropsychologia 49:1306–1315

    Article  Google Scholar 

  • Bertolero MA, Yeo BTT, D’Esposito M (2015) The modular and integrative functional architecture of the human brain. Proc Natl Acad Sci U S A 112:E6798–E6807

    Article  Google Scholar 

  • Binkofski F, Buccino G (2004) Motor functions of the Broca’s region. Brain Lang 89:362–369

    Article  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303

    Article  Google Scholar 

  • Bruner E (2008) Comparing endocranial form and shape differences in modern humans and Neandertal: a geometric approach. PaleoAnthropology 2008:93–106

    Google Scholar 

  • Bruner E (2010a) Morphological differences in the parietal lobes within the human genus: a neurofunctional perspective. Curr Anthropol 51:S77–S88

    Article  Google Scholar 

  • Bruner E (2010b) The evolution of the parietal cortical areas in the human genus: between structure and cognition. In: Broadfield D, Yuan M, Schick K, Toth N (eds) The human brain evolving: paleoneurological studies in honor of Ralph L. Holloway. Stone Age Institute, pp 83–96

    Google Scholar 

  • Bruner E (2014) Functional craniology, human evolution, and anatomical constraints in the Neanderthal braincase. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans (Vol. 2). Springer, Japan, pp 121–129

    Chapter  Google Scholar 

  • Bruner E (2015) Functional craniology and brain evolution. In: Bruner E (ed) Human Paleoneurology. Springer, Switzerland, pp 57–94

    Google Scholar 

  • Bruner E, Holloway RL (2010) A bivariate approach to the widening of the frontal lobes in the genus Homo. J Hum Evol 58:138–146

    Article  Google Scholar 

  • Bruner E, Iriki A (2016) Extending mind, visuospatial integration, and the evolution of the parietal lobes in the human genus. Quat Int 405:98–110

    Article  Google Scholar 

  • Bruner E, Jacobs HIL (2013) Alzheimer’s disease: the downside of a highly evolved parietal lobe? J Alzheimers Dis 35:227–240

    Google Scholar 

  • Bruner E, Lozano M (2014) Extended mind and visuo-spatial integration: three hands for the Neandertal lineage. J Anthropol Sci 92:273–280

    Google Scholar 

  • Bruner E, Lozano M (2015) Three hands: one year later. J Anthropol Sci:191–195

    Google Scholar 

  • Bruner E, Manzi G (2006) Saccopastore 1: the earliest Neanderthal? In: Harvati K, Harrison T (eds) Neanderthals revisited. New approaches and perspectives. Vertebrate paleobiology and paleoanthropology series. Springer, New York

    Google Scholar 

  • Bruner E, Manzi G (2008) Paleoneurology of an “early” Neandertal: endocranial size, shape, and features of Saccopastore 1. J Hum Evol 54:729–742

    Article  Google Scholar 

  • Bruner E, Pearson O (2013) Neurocranial evolution in modern humans: the case of Jebel Irhoud 1. Anthropol Sci 121:31–41

    Article  Google Scholar 

  • Bruner E, Ripani M (2008) A quantitative and descriptive approach to morphological variation of the endocranial base in modern humans. Am J Phys Anthropol 137:30–40

    Article  Google Scholar 

  • Bruner E, Sherkat S (2008) The middle meningeal artery: from clinics to fossils. Childs Nerv Syst 24:1289–1298

    Article  Google Scholar 

  • Bruner E, Manzi G, Arsuaga JL (2003) Encephalization and allometric trajectories in the genus Homo: evidence from the Neandertal and modern lineages. Proc Natl Acad Sci U S A 100:15335–15340

    Article  Google Scholar 

  • Bruner E, Saracino B, Ricci F, Tafuri M, Passarello P, Manzi G (2004) Midsagittal cranial shape variation in the genus Homo by geometric morphometrics. Coll Antropol 28:99–112

    Google Scholar 

  • Bruner E, Mantini S, Perna A, Maffei C, Manzi G (2005) Fractal dimension of the middle meningeal vessels: variation and evolution in Homo erectus, Neanderthals, and modern humans. Eur J Morphol 42:217–224

    Article  Google Scholar 

  • Bruner E, Martin-Loeches M, Colom R (2010) Human midsagittal brain shape variation: patterns, allometry and integration. J Anat 216:589–599

    Article  Google Scholar 

  • Bruner E, Mantini S, Musso F, De la Cuétara JM, Ripani M, Sherkat S (2011) The evolution of the meningeal vascular system in the human genus: from brain shape to thermoregulation. Am J Hum Biol 23:35–43

    Article  Google Scholar 

  • Bruner E, De La Cuétara JM, Musso F (2012) Quantifying patterns of endocranial heat distribution: brain geometry and thermoregulation. Am J Hum Biol 24:753–762

    Article  Google Scholar 

  • Bruner E, De la Cuétara JM, Masters M, Amano H, Ogihara N (2014a) Functional craniology and brain evolution: from paleontology to biomedicine. Front Neuroanat 8:19

    Article  Google Scholar 

  • Bruner E, Rangel de Lázaro G, de la Cuétara JM, Martín-Loeches M, Colóm R, Jacobs HIL (2014b) Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals. J Anat 224:367–376

    Article  Google Scholar 

  • Bruner E, Amano H, de la Cuétara JM, Ogihara N (2015a) The brain and the braincase: a spatial analysis on the midsagittal profile in adult humans. J Anat 227:268–276

    Article  Google Scholar 

  • Bruner E, Grimaud-Hervé D, Wu X, De la Cuétara JM, Holloway R (2015b) A paleoneurological survey of Homo erectus endocranial metrics. Quat Int 368:80–87

    Article  Google Scholar 

  • Bruner E, Román FJ, de la Cuétara JM, Martín-Loeches M, Colóm R (2015c) Cortical surface area and cortical thickness in the precuneus of adult humans. Neuroscience 286:345–352

    Article  Google Scholar 

  • Bruner E, Lozano M, Lorenzo C (2016) Visuospatial integration and human evolution: the fossil evidence. J Anthropol 94:81–97

    Google Scholar 

  • Bruner E, Pereira-Pedro AS, Chen X, Rilling JK (2017a) Precuneus proportions and cortical folding: a morphometric evaluation on a racially diverse human sample. Ann Anat 211:120–128

    Article  Google Scholar 

  • Bruner E, Preuss T, Chen X, Rilling J (2017b) Evidence for expansion of the precuneus in human evolution. Brain Struct Funct 222:1053–1060

    Article  Google Scholar 

  • Bruner E, Spinapolice E, Burke A, Overmann K (2017c) Visuospatial integration: paleoanthropological and archaeological perspectives. In: Di Paolo LD, Di Vincenzo F, D’Almeida AF (eds) Evolution of primate social cognition. Springer, Cham. (in press)

    Google Scholar 

  • Buccino G, Riggio L, Melli G, Binkofski F, Gallese V, Rizzolatti G (2005) Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study. Brain Res Cogn Brain Res 24:355–363

    Article  Google Scholar 

  • Burke A (2012) Spatial abilities, cognition and the pattern of Neanderthal and modern human dispersals. Quat Int 247:230–235

    Article  Google Scholar 

  • Byrge L, Sporns O, Smith LB (2014) Developmental process emerges from extended brain–body–behavior networks. Trends Cogn Sci 18:395–403

    Article  Google Scholar 

  • Caminiti R, Innocenti GM, Battaglia-Mayer A (2015) Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neurosci Biobehav Rev 56:73–96

    Article  Google Scholar 

  • Cantlon JF, Brannon EM, Carter EJ, Pelphrey KA (2006) Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biol 4:e125

    Article  Google Scholar 

  • Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. NeuroImage 33:430–448

    Article  Google Scholar 

  • Caspers S, Eickhoff SB, Rick T, von Kapri A, Kuhlen T, Huang R, Shah NJ, Zilles K (2011) Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. NeuroImage 58:362–380

    Article  Google Scholar 

  • Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583

    Article  Google Scholar 

  • Chafee MV, Goldman-Rakic PS (1998) Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 79:2919–2940

    Article  Google Scholar 

  • Choi H-J, Zilles K, Mohlberg H, Schleicher A, Fink GR, Armstrong E, Amunts K (2006) Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J Comp Neurol 495:53–69

    Article  Google Scholar 

  • Clark A (2007) Re-inventing ourselves: the plasticity of embodiment, sensing, and mind. J Med Philos 32:263–282

    Article  Google Scholar 

  • Clark A (2008) Supersizing the mind. Embodiment, action and cognitive extension. Oxford University Press, Oxford

    Book  Google Scholar 

  • Coolidge FL, Wynn T (2005) Working memory, its executive functions, and the emergence of modern thinking. Camb Archaeol J15:5–26

    Article  Google Scholar 

  • Culham JC, Kanwisher NG (2001) Neuroimaging of cognitive functions in human parietal cortex. Curr Opin Neurobiol 11:157–163

    Article  Google Scholar 

  • Dart RA (1925) Australopithecus africanus: the man-ape of South Africa. Nature 2884:195–199

    Article  Google Scholar 

  • De Sousa AA, Sherwood CC, Mohlberg H, Amunts K, Schleicher A, MacLeod CE, Hof PR, Frahm H, Zilles K (2010) Hominoid visual brain structure volumes and the position of the lunate sulcus. J Hum Evol 58:281–292

    Article  Google Scholar 

  • Deschamps I, Baum SR, Gracco VL (2014) On the role of the supramarginal gyrus in phonological processing and verbal working memory: evidence from rTMS studies. Neuropsychologia 53:39–46

    Article  Google Scholar 

  • Doré V, Villemagne VL, Bourgeat P, Fripp J, Acosta O, Chetélat G, Zhou L, Martins R, Ellis KA, Masters CL, Ames D, Salvado O, Rowe CC (2013) Cross-sectional and longitudinal analysis of the relationship between aβ deposition, cortical thickness, and memory in cognitively unimpaired individuals and in Alzheimer’s disease. JAMA Neurol 70:903–911

    Article  Google Scholar 

  • Dunbar RIM (2010) The social role of touch in humans and primates: behavioural function and neurobiological mechanisms. Neurosci Biobehav Rev 34:260–268

    Article  Google Scholar 

  • Ebeling U, Steinmetz H (1995) Anatomy of the parietal lobe: mapping the individual pattern. Acta Neurochir 136:8–11

    Article  Google Scholar 

  • Eidelberg D, Galaburda AM (1984) Inferior parietal lobule: divergent architectonic asymmetries in the human brain. Arch Neurol 41:843–852

    Article  Google Scholar 

  • Enlow DH (1990) Facial growth. Sounders, Philadelphia

    Google Scholar 

  • Ferraina S, Garasto MR, Battaglia-Mayer A, Ferraresi P, Johnson PB, Lacquaniti F, Caminiti R (1997) Visual control of hand-reaching movement: activity in parietal area 7m. Eur J Neurosci 9:1090–1095

    Article  Google Scholar 

  • Fletcher PC, Frith CD, Baker SC, Shallice T, Frackowiak RSJ, Dolan RJ (1995) The mind’s eye—precuneus activation in memory-related imagery. NeuroImage 2:195–200

    Article  Google Scholar 

  • Freton M, Lemogne C, Bergouignan L, Delaveau P, Lehéricy S, Fossati P (2014) The eye of the self: precuneus volume and visual perspective during autobiographical memory retrieval. Brain Struct Funct 219:959–968

    Article  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF III, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A 101:8174–8179

    Article  Google Scholar 

  • Gómez-Robles A, Hopkins WD, Sherwood CC (2013) Increased morphological asymmetry, evolvability and plasticity in human brain evolution. Proc R Soc B 280:20130575

    Article  Google Scholar 

  • Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC (2015) Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc Natl Acad Sci U S A 112:14799–14804

    Article  Google Scholar 

  • Gómez-Robles A, Smaers JB, Holloway RL, Polly PD, Wood BA (2017) Brain enlargement and dental reduction were not linked in hominin evolution. Proc Natl Acad Sci U S A 114:468–473

    Article  Google Scholar 

  • Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207:3–17

    Article  Google Scholar 

  • Grimaud-Hervé D (1997) L’évolution de l’encéphale chez l’Homo erectus et l’Homo sapiens. CNRS Editions, Paris

    Google Scholar 

  • Gunz P, Harvati K (2007) The Neanderthal “chignon”: variation, integration, and homology. J Hum Evol 52:262–274

    Article  Google Scholar 

  • Gunz P, Neubauer S, Maureille B, Hublin J-J (2010) Brain development after birth differs between Neanderthals and modern humans. Curr Biol 20:R921–R922

    Article  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    Article  Google Scholar 

  • Hammer Ø, Ryan P, Harper D (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hauk O, Johnsrude I, Pulvermüller F (2004) Somatotopic representation of action words in human motor and premotor cortex. Neuron 41:301–307

    Article  Google Scholar 

  • Hecht EE, Gutman DA, Preuss TM, Sanchez MM, Parr LA, Rilling JK (2013) Process versus product in social learning: comparative diffusion tensor imaging of neural systems for action execution–observation matching in macaques, chimpanzees, and humans. Cereb Cortex 23:1014–1024

    Article  Google Scholar 

  • Hershkovitz I, Greenwald C, Rothschild BM, Latimer B, Dutour O, Wish-Baratz S, Pap I, Leonetti G (1999) The elusive diploic veins: anthropological and anatomical perspective. Am J Phys Anthropol 108:345–358

    Article  Google Scholar 

  • Hihara S, Notoya T, Tanaka M, Ichinose S, Ojima H, Obayashi S, Fujii N, Iriki A (2006) Extension of corticocortical afferents into the anterior bank of the intraparietal sulcus by tool-use training in adult monkeys. Neuropsychologia 44:2636–2646

    Article  Google Scholar 

  • Hills TT, Todd PM, Lazer D, Redish AD, Couzin ID (2015) Exploration versus exploitation in space, mind, and society. Trends Cogn Sci 19:46–54

    Article  Google Scholar 

  • Holloway RL (1995) Toward a synthetic theory of human brain evolution. In: Changeux JP, Chavaillon J (eds) Origins of the human brain. Clarendon Press, Oxford, pp 42–54

    Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2004) Brain endocasts: the paleoneurological evidence. The human fossil record, vol. III. Wiley-Liss, Hoboken

    Book  Google Scholar 

  • Hublin JJ, Ben-Ncer A, Bailey SE, Freidline SE, Neubauer S, Skinner MM, Bergmann I, Le Cabec A, Benazzi S, Harvati K, Gunz P (2017) New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546:289–292

    Article  Google Scholar 

  • Huang K-L, Lin K-J, Hsiao I-T, Kuo HC, Hsu WC, Chuang WL, Kung MP, Wey SP, Hsieh CJ, Wai YY, Yen TC, Huang CC (2013) Regional amyloid deposition in amnestic mild cognitive impairment and Alzheimer’s disease evaluated by [18F]AV-45 positron emission tomography in Chinese population. PLoS One 8:e58974

    Article  Google Scholar 

  • Im K, Lee J-M, Lee J, Shin Y, Kim IY, Kwon JS, Kim SI (2006) Gender difference analysis of cortical thickness in healthy young adults with surface-based methods. NeuroImage 31:31–38

    Article  Google Scholar 

  • Iriki A, Sakura O (2008) The neuroscience of primate intellectual evolution: natural selection and passive and intentional niche construction. Philos Trans R Soc B 363:2229–2241

    Article  Google Scholar 

  • Iriki A, Taoka M (2012) Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions. Philos Trans R Soc B 367:10–23

    Article  Google Scholar 

  • Jacobs HIL, Van Boxtel MPJ, Jolles J, Verhey FRJ, Uylings HBM (2012) Parietal cortex matters in Alzheimer’s disease: an overview of structural, functional and metabolic findings. Neurosci Biobehav Rev 36:297–309

    Article  Google Scholar 

  • Jacobs HIL, Radua J, Lückmann HC, Sack AT (2013) Meta-analysis of functional network alterations in Alzheimer’s disease: toward a network biomarker. Neurosci Biobehav Rev 37:753–765

    Article  Google Scholar 

  • Jiang X, Iseki S, Maxson RE, Sucov HM, Morriss-Kay GM (2002) Tissue origins and interactions in the mammalian skull vault. Dev Biol 241:106–116

    Article  Google Scholar 

  • Jirak D, Menz MM, Buccino G, Borghi AM, Binkofski F (2010) Grasping language – a short story on embodiment. Conscious Cogn 19:711–720

    Article  Google Scholar 

  • Jung RE, Haier RJ (2007) The Parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30:135–154

    Article  Google Scholar 

  • Kacar E, Nas OF, Okeer E, Hakyemez B (2015) Pattern, variability, and hemispheric differences of the subparietal sulcus on multiplanar reconstructed MR images. Surg Radiol Anat 38:89–96

    Article  Google Scholar 

  • Klepp A, Niccolai V, Buccino G, Schnitzler A, Biermann-Ruben K (2015) Language–motor interference reflected in MEG beta oscillations. NeuroImage 109:438–448

    Article  Google Scholar 

  • Klingenberg CP (2011) Morphoj: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  Google Scholar 

  • Kobayashi Y, Matsui T, Haizuka Y, Hirai N, Matsumura G (2014) Cerebral sulci and gyri observed on macaque endocasts. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans volume 2. Springer, Japan, pp 131–137

    Chapter  Google Scholar 

  • Kondo O, Kubo D, Suzuki H, Ogihara N (2014) Virtual Endocast of Qafzeh 9: a preliminary assessment of right-left asymmetry. In: Akazawa T, Ogihara NC, Tanabe H, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans volume 2. Springer, Japan, pp 183–190

    Chapter  Google Scholar 

  • Land MF (2014) Do we have an internal model of the outside world? Philos Trans R Soc B 369:20130045–20130045

    Article  Google Scholar 

  • Leshinskaya A, Caramazza A (2016) Abstract categories of functions in anterior parietal lobe. Neuropsychologia 76:27–40

    Article  Google Scholar 

  • Luders E, Narr KI, Thompson PM, Rex DE, Jancke I, Toga AW (2006) Hemispheric asymmetries in cortical thickness. Cereb Cortex 16:1232–1238

    Article  Google Scholar 

  • Lundstrom BN, Ingvar M, Petersson KM (2005) The role of precuneus and left inferior frontal cortex during source memory episodic retrieval. NeuroImage 27:824–834

    Article  Google Scholar 

  • Maister L, Slater M, Sanchez-Vives MV, Tsakiris M (2015) Changing bodies changes minds: owning another body affects social cognition. Trends Cogn Sci 19:6–12

    Article  Google Scholar 

  • Malafouris L (2008) Between brains, bodies and things: tectonoetic awareness and the extended self. Philos Trans R Soc Lond Ser B Biol Sci 363:1993–2002

    Article  Google Scholar 

  • Malafouris L (2010) The brain–artefact interface (BAI): a challenge for archaeology and cultural neuroscience. Soc Cogn Affect Neurosci 5:264–273

    Article  Google Scholar 

  • Malafouris L (2013) How things shape the mind: a theory of material engagement. MIT Press, Cambridge

    Google Scholar 

  • Manzi G, Vienna A, Hauser G (1996) Developmental stress and cranial hypostosis by epigenetic trait occurrence and distribution: an exploratory study on the Italian Neandertals. J Hum Evol 30:511–527

    Article  Google Scholar 

  • Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19:1498–1507

    Article  Google Scholar 

  • Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, Villringer A, Castellanos FX, Milham MP, Petrides M (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci U S A 106:20069–20074

    Article  Google Scholar 

  • Marino BFM, Gallese V, Buccino G, Riggio L (2012) Language sensorimotor specificity modulates the motor system. Cortex 48:849–856

    Article  Google Scholar 

  • Mars RB, Jbabdi S, Sallet J, O'Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG, Behrens TE, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MF (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31:4087–4100

    Article  Google Scholar 

  • Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4

    Google Scholar 

  • Morriss-Kay GM, Wilkie AOM (2005) Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat 207:637–653

    Article  Google Scholar 

  • Moss ML, Young RW (1960) A functional approach to craniology. Am J Phys Anthropol 18:281–292

    Article  Google Scholar 

  • Mountcastle VB (1995) The parietal system and some higher brain functions. Cereb Cortex 5:377–390

    Article  Google Scholar 

  • Nejad KK, Sugiura M, Nozawa T, Kotozaki Y, Furusawa Y, Nishino K, Nukiwa T, Kawashima R (2015) Supramarginal activity in interoceptive attention tasks. Neurosci Lett 589:42–46

    Article  Google Scholar 

  • Neubauer S, Gunz P, Hublin J-J (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215:240–255

    Article  Google Scholar 

  • Neubauer S, Gunz P, Hublin J-J (2010) Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59:555–566

    Article  Google Scholar 

  • Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand JB, Vanduffel W (2006) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44:2647–2667

    Article  Google Scholar 

  • Pearce E, Stringer C, Dunbar RIM (2013) New insights into differences in brain organization between Neanderthals and anatomically modern humans. Proc R Soc Lond B Biol Sci 280:1758

    Article  Google Scholar 

  • Peer M, Salomon R, Goldberg I, Blanke O, Arzy S (2015) Brain system for mental orientation in space, time, and person. Proc Natl Acad Sci U S A 112:11072–11077

    Article  Google Scholar 

  • Pereira-Pedro AS, Bruner E (2016) Sulcal pattern, extension, and morphology of the precuneus in adult humans. Ann Anat 208:85–93

    Article  Google Scholar 

  • Ponce de León MS, Bienvenu T, Akazawa T, Zollikofer CPE (2016) Brain development is similar in Neanderthals and modern humans. Curr Biol 26:R665–R666

    Article  Google Scholar 

  • Posner MI, Walker JA, Friedrich FJ, Rafal RD (1984) Effects of parietal injury on covert orienting of attention. J Neurosci 4:1863–1874

    Google Scholar 

  • Preuss TM (2011) The human brain: rewired and running hot: the human brain: rewired and running hot. Ann N Y Acad Sci 1225:E182–E191

    Article  Google Scholar 

  • Quallo MM, Price CJ, Ueno K, Asamizuya T, Cheng K, Lemon RN, Iriki A (2009) Gray and white matter changes associated with tool-use learning in macaque monkeys. Proc Natl Acad Sci U S A 106:18379–18384

    Article  Google Scholar 

  • Rangel de Lázaro G, de la Cuétara JM, Píšová H, Lorenzo C, Bruner E (2016) Diploic vessels and computed tomography: segmentation and comparison in modern humans and fossil hominids. Am J Phys Anthropol 159:313–324

    Article  Google Scholar 

  • Rilling JK (2006) Human and non-human primate brains: are they allometrically scaled versions of the same design? Evol Anthropol 15:65–77

    Article  Google Scholar 

  • Rilling JK (2008) Neuroscientific approaches and applications within anthropology. Am J Phys Anthropol 137:2–32

    Article  Google Scholar 

  • Runer E, Spinapolice E, Burke A, Overmann K (2017) Visuospatial integration: paleoanthropological and archaeological perspectives. In: Di Paolo LD, Di Vincenzo F, D’Almeida AF (eds) Evolution of primate social cognition. Springer, Cham. (in press)

    Google Scholar 

  • Rushworth MFS, Paus T, Sipila PK (2001) Attention systems and the organization of the human parietal cortex. J Neurosci 21:5262–5271

    Google Scholar 

  • Sakata H, Taira M, Kusunoki M, Murata A, Tanaka Y (1997) The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20:350–357

    Article  Google Scholar 

  • Salinas J, Mills ED, Conrad AL, Koscik T, Andreasen NC, Nopoulos P (2012) Sex differences in parietal lobe structure and development. Gend Med 9:44–55

    Article  Google Scholar 

  • Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008a) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 18:2141–2157

    Article  Google Scholar 

  • Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008b) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18:846–867

    Article  Google Scholar 

  • Scott N, Neubauer S, Hublin JJ, Gunz P (2014) A shared pattern of postnatal endocranial development in extant hominoids. Evol Biol 41:572–594

    Article  Google Scholar 

  • Seghier ML (2013) The angular gyrus multiple functions and multiple subdivisions. Neuroscientist 19:43–61

    Article  Google Scholar 

  • Semendeferi K, Damasio H (2000) The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol 38:317–332

    Article  Google Scholar 

  • Semendeferi K, Damasio H, Frank R, Van Hoesen GW (1997) The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J Hum Evol 32:375–388

    Article  Google Scholar 

  • Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354

    Article  Google Scholar 

  • Sherwood CC, Smaers JB (2013) What’s the fuss over human frontal lobe evolution? Trends Cogn Sci 17:432–433

    Article  Google Scholar 

  • Smaers JB (2013) How humans stand out in frontal lobe scaling. Proc Natl Acad Sci U S A 110:E3682–E3682

    Article  Google Scholar 

  • Sotero RC, Iturria-Medina Y (2011) From blood oxygenation level dependent (BOLD) signals to brain temperature maps. Bull Math Biol 73:2731–2747

    Article  Google Scholar 

  • Stieler JT, Bullmann T, Kohl F, Tøien Ø, Brückner MK, Härtig W, Barnes BM, Arendt T (2011) The physiological link between metabolic rate depression and tau phosphorylation in mammalian hibernation. PLoS One 6:e14530

    Article  Google Scholar 

  • Stout D, Chaminade T (2007) The evolutionary neuroscience of tool making. Neuropsychologia 45:1091–1100

    Article  Google Scholar 

  • Stout D, Toth N, Schick K, Stout J, Hutchins G (2000) Stone tool-making and brain activation: position emission tomography (PET) studies. J Archaeol Sci 27:1215–1223

    Article  Google Scholar 

  • Studer B, Cen D, Walsh V (2014) The angular gyrus and visuospatial attention in decision-making under risk. NeuroImage 103:75–80

    Article  Google Scholar 

  • Tobias PV (1995) The brain of the first hominids. In: Changeaux JP, Chavaillon J (eds) Origins of the human brain. Clarendon Press, Oxford, pp 61–83

    Google Scholar 

  • Tunik E, Rice NJ, Hamilton A, Grafton ST (2007) Beyond grasping: representation of action in human anterior intraparietal sulcus. NeuroImage 36:T77–T86

    Article  Google Scholar 

  • Utevsky AV, Smith DV, Huettel SA (2014) Precuneus is a functional core of the default-mode network. J Neurosci 34:932–940

    Article  Google Scholar 

  • Vanduffel W, Fize D, Peuskens H, Denys K, Sunaert S, Todd JT, Orban GA (2002) Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298:413–415

    Article  Google Scholar 

  • Wardak C, Hamed SB, Duhamel JR (2005) Parietal mechanism of selective attention in monkeys and humans. In: Dehaene S, Duhamel JR, Hauser MD, Rizzolatti G (eds) From monkey brain to human brain. MIT Press, Cambridge, MA

    Google Scholar 

  • Weidenreich F (1936) Observations on the form and proportions of the endocranial casts of Sinanthropus pekinensis, other hominids and the great apes: a comparative study of brain size. Palaeontol Sin B VII:1–150

    Google Scholar 

  • Wild HM, Heckemann RA, Studholme C, Hammers A (2017) Gyri of the human parietal lobe: volumes, spatial extents, automatic labelling, and probabilistic atlases. PLoS One 12:e0180866

    Article  Google Scholar 

  • Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20:25–42

    Article  Google Scholar 

  • Wu X, Bruner E (2016) The endocranial anatomy of Maba 1. Am J Phys Anthropol 160:633–643

    Article  Google Scholar 

  • Yantis S, Schwarzbach J, Serences JT, Carlson RL, Steinmetz MA, Pekar JJ, Courtney SM (2002) Transient neural activity in human parietal cortex during spatial attention shifts. Nat Neurosci 5:995–1002

    Article  Google Scholar 

  • Zhang S, Li CR (2012) Functional connectivity mapping of the human precuneus by resting state fMRI. NeuroImage 59:3548–3562

    Article  Google Scholar 

Download references

Acknowledgments

Data presented in this survey were collected within the project “Replacement of Neanderthals by Modern Humans: Testing Evolutionary Models of Learning,” funded by the Japanese Government (#22101006). EB is funded by the Spanish Government (CGL2015-65387-C3-3-P) and by the Wenner-Gren Foundation. ASPP is funded by the Atapuerca Foundation, Spain. We are grateful to Todd Preuss, Jim Rilling, Ralph Holloway, Simon Neubauer, Philipp Gunz, Karl Zilles, Osamu Kondo, Gizéh Rangel de Lázaro, Stana Eisová, Hana Píšová, José Manuel de la Cuétara, Giorgio Manzi, Aida Gómez-Robles, Dominique Grimaud-Hervé, Roberto Colom, Manuel Martin-Loeches, Marina Lozano, and Heidi Jacobs for their collaboration and suggestions on the topics presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Bruner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Bruner, E., Amano, H., Pereira-Pedro, A.S., Ogihara, N. (2018). The Evolution of the Parietal Lobes in the Genus Homo . In: Bruner, E., Ogihara, N., Tanabe, H. (eds) Digital Endocasts. Replacement of Neanderthals by Modern Humans Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56582-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56582-6_15

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56580-2

  • Online ISBN: 978-4-431-56582-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics