Skip to main content

Hybrids with Functional Dyes

  • Chapter
  • First Online:
Inorganic Nanosheets and Nanosheet-Based Materials

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This review summarizes current knowledge on hybrid materials based on inorganic layered nanoparticles with functional dyes. Emphasis is placed on materials where organic dyes are the main components in terms of the material’s functionality. The review analyzes fundamental phenomena and the properties of these materials, such as metachromasy and dye molecular aggregation, photoactivity and luminescence, photochemistry, optical anisotropy, nonlinear optical and photochromic properties, structural changes and chemical reactions, resonance energy transfer, and photosensitization. The role of inorganic layered particles in the alteration of dye properties is broadly analyzed. Various types of hybrid materials and their relevance for research, materials science, and industry are briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1Δg :

Singlet oxygen

CEC :

Cation exchange capacity

ED:

Energy donor

EA:

Energy acceptor

FRET:

Förster resonance energy transfer

Hec:

Hectorite

Lap:

Laponite

LB:

Langmuir–Blodgett

LbL:

Layer-by-layer

LDH:

Layered double hydroxide(s)

LNb:

Layered niobate(s)

LSil:

Layered silicate(s)

LTi:

Layered titanate(s)

MB:

Methylene blue

Mmt:

Montmorillonite(s)

NLO:

Nonlinear optical (or nonlinear optics)

RCMs:

Reduced-charge montmorillonites

Rh:

Rhodamine

ROS:

Reactive oxygen species

Sap:

Saponite

UV:

Ultraviolet

References

  1. Zhang Y, Fan L, Chen H, Zhang J, Zhang Y, Wang A (2015) Learning from ancient Maya: preparation of stable palygorskite/methylene blue@SiO2 Maya Blue-like pigment. Microporous Mesoporous Mater 211:124–133. doi:10.1016/j.micromeso.2015.03.002

    Article  CAS  Google Scholar 

  2. Giustetto R, Vitillo JG, Corazzari I, Turci F (2014) Evolution and reversibility of host/guest interactions with temperature changes in a Methyl Red@Palygorskite polyfunctional hybrid nanocomposite. J Phys Chem C 118(33):19322–19337. doi:10.1021/jp4091238

  3. Domenech-Carbo A, Domenech-Carbo MT, Osete-Cortina L, Valle-Algarra FM, Buti D (2014) Isomerization and redox tuning in ‘Maya yellow’ hybrids from flavonoid dyes plus palygorskite and kaolinite clays. Microporous Mesoporous Mater 194:135–145. doi:10.1016/j.micromeso.2014.03.046

    Article  CAS  Google Scholar 

  4. Ogawa M, Kuroda K (1995) Photofunctions of intercalation compounds. Chem Rev 95(2):399–438. doi:10.1021/cr00034a005

    Article  CAS  Google Scholar 

  5. Schulz-Ekloff G, Wohrle D, van Duffel B, Schoonheydt RA (2002) Chromophores in porous silicas and minerals: preparation and optical properties. Microporous Mesoporous Mater 51(2):91–138

    Article  CAS  Google Scholar 

  6. Lezhnina MM, Kynast UH (2010) Optical properties of matrix confined species. Opt Mater 33(1):4–13. doi:10.1016/j.optmat.2010.07.005

    Article  CAS  Google Scholar 

  7. Latterini L, Nocchetti M, Aloisi GG, Costantino U, Elisei F (2007) Organized chromophores in layered inorganic matrices. Inorg Chim Acta 360(3):728–740. doi:10.1016/j.ica.2006.07.048

    Article  CAS  Google Scholar 

  8. Demel J, Lang K (2012) Layered hydroxide-porphyrin hybrid materials: synthesis, structure, and properties. Eur J Inorg Chem 32:5154–5164. doi:10.1002/ejic.201200400

    Article  CAS  Google Scholar 

  9. Takagi S, Eguchi M, Tryk DA, Inoue H (2006) Porphyrin photochemistry in inorganic/organic hybrid materials: clays, layered semiconductors, nanotubes, and mesoporous materials. J Photochem Photobiol, C 7(2–3):104–126. doi:10.1016/j.jphotochemrev.2006.04.002

    Article  CAS  Google Scholar 

  10. Liu P, Zhang L (2007) Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep Purif Technol 58 (1):32–39. doi:http://dx.doi.org/10.1016/j.seppur.2007.07.007

  11. Zhou CH, Shen ZF, Liu LH, Liu SM (2011) Preparation and functionality of clay-containing films. J Mater Chem 21(39):15132–15153

    Article  CAS  Google Scholar 

  12. Bujdák J (2006) Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. Appl Clay Sci 34(1–4):58–73. doi:10.1016/j.clay.2006.02.011

    Article  CAS  Google Scholar 

  13. Schoonheydt RA (2002) Smectite-type clay minerals as nanomaterials. Clays Clay Miner 50(4):411–420

    Article  CAS  Google Scholar 

  14. Okada T, Sohmiya M, Ogawa M (2015) Photochromic intercalation compounds. Struct Bond 166:177–211. doi:10.1007/978-3-319-16991-0-5

    Article  CAS  Google Scholar 

  15. Arbeloa FL, Martinez V, Arbeloa T, Arbeloa IL (2010) Fluorescence anisotropy to study the preferential orientation of fluorophores in ordered bi-dimensional systems: rhodamine 6G/Laponite layered films. In: Geddes CD (ed) Reviews in fluorescence 2008, vol 5. Reviews in fluorescence. Kluwer Academic/Plenum Publ, New York, pp 1–35. doi:10.1007/978-1-4419-1260-2_1

  16. Neumann MG, Gessner F (2002) Adsorption of Dyes on Clay Surfaces. In: Hubbard AT (ed) Encyclopedia of surface and colloid science, vol 1. Marcel Dekker A.G, New York, pp 307–320

    Google Scholar 

  17. Yariv S (2002) Staining of clay minerals and visible absorption spectroscopy of dye-clay complexes. In: Yariv S, Cross H (eds) Organo-clay complexes and interactions. Marcel Dekker, New York, pp 463–566

    Google Scholar 

  18. Lagaly G, Ogawa M, Dekany I (2013) Clay mineral-organic interactions. In: Bergaya F, Lagaly G (eds) Handbook of clay science, 2nd edn. Elsevier, Amsterdam, pp 435–505

    Chapter  Google Scholar 

  19. Stewart TA, Nyman M, Deboer MP (2011) Delaminated titanate and peroxotitanate photocatalysts. Appl Catal B 105(1–2):69–76. doi:10.1016/j.apcatb.2011.03.036

    Article  CAS  Google Scholar 

  20. Nakato T, Inoue S, Hiraragi Y, Sugawara J, Mouri E, Aritani H (2014) Decomposition of a cyanine dye in binary nanosheet colloids of photocatalytically active niobate and inert clay. J Mater Sci 49(2):915–922. doi:10.1007/s10853-013-7777-8

    Article  CAS  Google Scholar 

  21. Miyamoto N, Nakato T (2003) Liquid crystalline colloidal system obtained by mixing niobate and aluminosilicate nanosheets: a spectroscopic study using a probe dye. Langmuir 19(19):8057–8064. doi:10.1021/la0268449

    Article  CAS  Google Scholar 

  22. Nakato T, Yamashita Y, Kuroda K (2006) Mesophase of colloidally dispersed nanosheets prepared by exfoliation of layered titanate and niobate. Thin Solid Films 495(1–2):24–28. doi:10.1016/j.tsf.2005.08.301

    Article  CAS  Google Scholar 

  23. Rytwo G, Nir S, Margulies L (1995) Interactions of monovalent organic cations with montmorillonite—adsorption studies and model-calculations. Soil Sci Soc Am J 59(2):554–564

    Article  CAS  Google Scholar 

  24. Chen Y (2015) Nanotubes and nanosheets: functionalization and applications of boron nitride and other nanomaterials. CRC Press, New York

    Book  Google Scholar 

  25. Rives V (2001) Layered double hydroxides: present and future. Nova Science Publishers, New York

    Google Scholar 

  26. Auerbach SM, Carrado KA, Dutta PK (2004) Handbook of layered materials. CRC Press, New York

    Google Scholar 

  27. Bujdák J, Komadel P (1997) Interaction of methylene blue with reduced charge montmorillonite. J Phys Chem B 101(44):9065–9068

    Article  Google Scholar 

  28. Bujdák J, Janek M, Madejová J, Komadel P (1998) Influence of the layer charge density of smectites on the interaction with methylene blue. J Chem Soc, Faraday Trans 94(23):3487–3492

    Article  Google Scholar 

  29. Bujdák J, Iyi N, Kaneko Y, Czímerová A, Sasai R (2003) Molecular arrangement of rhodamine 6G cations in the films of layered silicates: the effect of the layer charge. Phys Chem Chem Phys 5(20):4680–4685. doi:10.1039/b305699f

    Article  Google Scholar 

  30. Bujdák J, Iyi N (2006) Molecular aggregation of rhodamine dyes in dispersions of layered silicates: influence of dye molecular structure and silicate properties. J Phys Chem B 110(5):2180–2186. doi:10.1021/jp0553378

    Article  CAS  Google Scholar 

  31. Chen GM, Iyi NB, Sasai R, Fujita T, Kitamura K (2002) Intercalation of rhodamine 6G and oxazine 4 into oriented clay films and their alignment. J Mater Res 17(5):1035–1040

    Article  CAS  Google Scholar 

  32. Iyi N, Sasai R, Fujita T, Deguchi T, Sota T, Arbeloa FL, Kitamura K (2002) Orientation and aggregation of cationic laser dyes in a fluoromica: polarized spectrometry studies. Appl Clay Sci 22(3):125–136

    Article  CAS  Google Scholar 

  33. Bujdák J, Iyi N (2006) Spectral and structural characteristics of oxazine 4/hexadecyltrimethylammonium montmorillonite films. Chem Mater 18(10):2618–2624. doi:10.1021/cm052715c

    Article  CAS  Google Scholar 

  34. Miyamoto N, Nakato T (2002) Liquid crystalline nature of K4Nb6O17 nanosheet sols and their macroscopic alignment. Adv Mater 14(18):1267–1270

    Google Scholar 

  35. Hibino T, Jones W (2001) New approach to the delamination of layered double hydroxides. J Mater Chem 11(5):1321–1323. doi:10.1039/b101135i

    Article  CAS  Google Scholar 

  36. Li L, Ma RZ, Ebina Y, Iyi N, Sasaki T (2005) Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem Mater 17(17):4386–4391. doi:10.1021/cm0510460

    Article  CAS  Google Scholar 

  37. Iyi N, Yamada H (2012) Efficient decarbonation of carbonate-type layered double hydroxide (CO32-LDH) by ammonium salts in alcohol medium. Appl Clay Sci 65–66:121–127. doi:10.1016/j.clay.2012.05.001

    Article  CAS  Google Scholar 

  38. Iyi N, Yamada H, Sasaki T (2011) Deintercalation of carbonate ions from carbonate-type layered double hydroxides (LDHs) using acid-alcohol mixed solutions. Appl Clay Sci 54(2):132–137. doi:10.1016/j.clay.2011.07.017

    Article  CAS  Google Scholar 

  39. Bujdák J, Iyi N (2012) Highly fluorescent colloids based on rhodamine 6G, modified layered silicate, and organic solvent. J Colloid Interface Sci 388(1):15–20. doi:10.1016/j.jcis.2012.08.020

    Article  CAS  Google Scholar 

  40. Eyama T, Yogo Y, Fujimura T, Tsukamoto T, Masui D, Shimada T, Tachibana H, Inoue H, Takagi S (2012) Adsorption and stacking behaviour of zwitterionic porphyrin on the clay surface. Clay Miner 47(2):243–250. doi:10.1180/claymin.2012.047.2.07

    Article  CAS  Google Scholar 

  41. Luo ZX, Gao ML, Ye YG, Yang SF (2015) Modification of reduced-charge montmorillonites by a series of Gemini surfactants: characterization and application in methyl orange removal. Appl Surf Sci 324:807–816. doi:10.1016/j.apsusc.2014.11.043

    Article  CAS  Google Scholar 

  42. Hata H, Kobayashi Y, Mallouk TE (2007) Encapsulation of anionic dye molecules by a swelling fluoromica through intercalation of cationic polyelectrolytes. Chem Mater 19(1):79–87. doi:10.1021/cm061908c

    Article  CAS  Google Scholar 

  43. Gunister E, Bozkurt AM, Catalgil-Giz H (2013) Poly (diallyldimethylammoniumchloride)/sodium-montmorillonite composite; structure, and adsorption properties. J Appl Polym Sci 129(3):1232–1237. doi:10.1002/app.38792

    Article  CAS  Google Scholar 

  44. Hao YF, Yan LG, Yu HQ, Yang K, Yu SJ, Shan RR, Du B (2014) Comparative study on adsorption of basic and acid dyes by hydroxy-aluminum pillared bentonite. J Mol Liq 199:202–207. doi:10.1016/j.molliq.2014.09.005

    Article  CAS  Google Scholar 

  45. Qin ZH, Yuan P, Yang SQ, Liu D, He HP, Zhu JX (2014) Silylation of Al-13-intercalated montmorillonite with trimethylchlorosilane and their adsorption for Orange II. Appl Clay Sci 99:229–236. doi:10.1016/j.clay.2014.06.038

    Article  CAS  Google Scholar 

  46. Tireli AA, Marcos FCF, Oliveira LF, Guimaraes ID, Guerreiro MC, Silva JP (2014) Influence of magnetic field on the adsorption of organic compound by clays modified with iron. Appl Clay Sci 97–98:1–7. doi:10.1016/j.clay.2014.05.014

    Article  CAS  Google Scholar 

  47. Wlodarczyk P, Komarneni S, Roy R, White WB (1996) Enhanced fluorescence of coumarin laser dye in the restricted geometry of a porous nanocomposite. J Mater Chem 6(12):1967–1969

    Article  CAS  Google Scholar 

  48. Felbeck T, Mundinger S, Lezhnina MM, Staniford M, Resch-Genger U, Kynast UH (2015) Multifold fluorescence enhancement in nanoscopic fluorophore-clay hybrids in transparent aqueous media. Chem Eur J 21(20):7582–7587. doi:10.1002/chem.201406416

    Article  CAS  Google Scholar 

  49. Giustetto R, Seenivasan K, Bonino F, Ricchiardi G, Bordiga S, Chierotti MR, Gobetto R (2011) Host/guest interactions in a sepiolite-based maya blue pigment: a spectroscopic study. J Phys Chem C 115(34):16764–16776. doi:10.1021/jp203270c

    Article  CAS  Google Scholar 

  50. Zhang YJ, Fan L, Zhang JP, Wang AQ (2015) Water-dispersible and stable fluorescent Maya Blue-like pigments. RSC Adv 5(44):35010–35016. doi:10.1039/c5ra01863c

    Article  CAS  Google Scholar 

  51. Lin YH, Hori Y, Hoshino S, Miyazawa C, Kohno Y, Shibata M (2014) Fluorescent colored material made of clay mineral and phycoerythrin pigment derived from seaweed. Dyes Pigm 100:97–103. doi:10.1016/j.dyepig.2013.08.022

    Article  CAS  Google Scholar 

  52. Lezhnina MM, Grewe T, Stoehr H, Kynast U (2012) Laponite blue: dissolving the insoluble. Angew Chem Int Ed 51(42):10652–10655. doi:10.1002/anie.201203236

    Article  CAS  Google Scholar 

  53. Carrado KA, Forman JE, Botto RE, Winans RE (1993) Incorporation of phthalocyanines by cationic and anionic clays via ion-exchange and direct synthesis. Chem Mater 5(4):472–478

    Article  CAS  Google Scholar 

  54. Fujii K, Hayashi S (eds) (2003) Syntheses of smectite-analogue/coumarin composites. 2001—a Clay Odyssey. Elsevier Science B.V., Amsterdam, Netherlands

    Google Scholar 

  55. Xue AL, Zhou SY, Zhao YJ, Lu XP, Han PF (2010) Adsorption of reactive dyes from aqueous solution by silylated palygorskite. Appl Clay Sci 48(4):638–640. doi:10.1016/j.clay.2010.03.011

    Article  CAS  Google Scholar 

  56. Fujii K, Kuroda T, Sakoda K, Iyi N (2011) Fluorescence resonance energy transfer and arrangements of fluorophores in integrated coumarin/cyanine systems within solid-state two-dimensional nanospace. J Photochem Photobiol, A 225(1):125–134. doi:10.1016/j.jphotochem.2011.10.009

    Article  CAS  Google Scholar 

  57. Fujii K, Iyi N, Sasai R, Hayashi S (2008) Preparation of a novel luminous heterogeneous system: rhodamine/coumarin/phyllosilicate hybrid and blue shift in fluorescence emission. Chem Mater 20(9):2994–3002. doi:10.1021/cm0716452

    Article  CAS  Google Scholar 

  58. Bujdák J, Danko M, Chorvát D Jr, Czímerová A, Sýkora J, Lang K (2012) Selective modification of layered silicate nanoparticle edges with fluorophores. Appl Clay Sci 65–66:152–157. doi:10.1016/j.clay.2012.04.029

    Article  CAS  Google Scholar 

  59. Al Bakain RZ, Al-Degs YS, Issa AA, Jawad SA, Abu Safieh KA, Al-Ghouti MA (2014) Activation of kaolin with minimum solvent consumption by microwave heating. Clay Miner 49(5):667–681. doi:10.1180/claymin.2014.049.5.04

    Article  CAS  Google Scholar 

  60. Sas S, Danko M, Lang K, Bujdák J (2015) Photoactive hybrid material based on kaolinite intercalated with a reactive fluorescent silane. Appl Clay Sci 108:208–214. doi:10.1016/j.clay.2015.02.031

    Article  CAS  Google Scholar 

  61. Okada T, Yoshido S, Miura H, Yamakami T, Sakai T, Mishima S (2012) Swellable microsphere of a layered silicate produced by using monodispersed silica particles. J Phys Chem C 116(41):21864–21869. doi:10.1021/jp307108t

    Article  CAS  Google Scholar 

  62. Suzuki Y, Hirakawa S, Sakamoto Y, Kawamata J, Kamada K, Ohta K (2008) Hybrid films consisting of a clay and a diacetylenic two-photon absorptive dye. Clays Clay Miner 56(5):487–493. doi:10.1346/ccmn.2008.0560501

    Article  CAS  Google Scholar 

  63. Shil A, Hussain SA, Bhattacharjee D (2015) Adsorption of a water soluble cationic dye into a cationic Langmuir monolayer. J Phys Chem Solids 80:98–104. doi:10.1016/j.jpcs.2015.01.005

    Article  CAS  Google Scholar 

  64. Ras RHA, Nemeth J, Johnston CT, DiMasi E, Dekany I, Schoonheydt RA (2004) Hybrid Langmuir-Blodgett monolayers containing clay minerals: effect of clay concentration and surface charge density on the film formation. Phys Chem Chem Phys 6(16):4174–4184. doi:10.1039/b405862c

    Article  CAS  Google Scholar 

  65. Ras RHA, Nemeth J, Johnston CT, Dekany I, Schoonheydt RA (2004) Orientation and conformation of octadecyl rhodamine B in hybrid Langmuir-Blodgett monolayers containing clay minerals. Phys Chem Chem Phys 6(23):5347–5352. doi:10.1039/b411339j

    Article  CAS  Google Scholar 

  66. Bhattacharjee J, Hussain SA, Bhattacharjee D (2013) Control of H-dimer formation of acridine orange using nano clay platelets. Spectrochim Acta A Mol Biomol Spectrosc 116:148–153. doi:10.1016/j.saa.2013.07.018

    Article  CAS  Google Scholar 

  67. Bujdák J (2014) Layer-by-layer assemblies composed of polycationic electrolyte, organic dyes, and layered silicates. J Phys Chem C 118(13):7152–7162. doi:10.1021/jp411155x

  68. Place I, Penner TL, McBranch DW, Whitten DG (2003) Layered nanocomposites of aggregated dyes and inorganic scaffolding. J Phys Chem A 107(18):3169–3177. doi:10.1021/jp026048b

    Article  CAS  Google Scholar 

  69. Leone G, Giovanella U, Bertini F, Porzio W, Meinardi F, Botta C, Ricci G (2013) Poly(styrene)-graft-/rhodamine 6G-fluoromica hybrids: synthesis, characterization and photophysical properties. J Mater Chem C 1(7):1450–1460. doi:10.1039/c2tc00533f

    Article  CAS  Google Scholar 

  70. Nakamura T, Ogawa M (2013) Adsorption of cationic dyes within spherical particles of poly(N-isopropylacrylamide) hydrogel containing smectite. Appl Clay Sci 83–84:469–473. doi:10.1016/j.clay.2013.05.005

    Article  CAS  Google Scholar 

  71. Olivero F, Carniato F, Bisio C, Marchese L (2012) A novel stable and efficient light-emitting solid based on saponite and luminescent POSS. J Mater Chem 22(48):25254–25261. doi:10.1039/c2jm34230h

    Article  CAS  Google Scholar 

  72. Suchithra PS, Vazhayal L, Mohamed AP, Ananthakumar S (2012) Mesoporous organic-inorganic hybrid aerogels through ultrasonic assisted sol-gel intercalation of silica-PEG in bentonite for effective removal of dyes, volatile organic pollutants and petroleum products from aqueous solution. Chem Eng J 200:589–600. doi:10.1016/j.cej.2012.06.083

    Article  CAS  Google Scholar 

  73. Zhang YX, Hao XD, Kuang M, Zhao H, Wen ZQ (2013) Preparation, characterization and dye adsorption of Au nanoparticles/ZnAl layered double oxides nanocomposites. Appl Surf Sci 283:505–512. doi:10.1016/j.apsusc.2013.06.136

    Article  CAS  Google Scholar 

  74. Kobayashi T (2012) J-Aggregates, vol 2. World Scientific, Signapore

    Book  Google Scholar 

  75. Bergmann K, O’Konski CT (1963) A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite. J Phys Chem 67(10):2169–2177

    Article  CAS  Google Scholar 

  76. Bujdák J, Iyi N, Fujita T (2002) The aggregation of methylene blue in montmorillonite dispersions. Clay Miner 37(1):121–133. doi:10.1180/0009855023710022

    Article  CAS  Google Scholar 

  77. Breen C, Loughlin H (1994) The competitive adsorption of methylene-blue on to Na-montmorillonite from binary-solution with N-alkylytrimethylammonium surfactants. Clay Miner 29(5):775–783

    CAS  Google Scholar 

  78. Gessner F, Schmitt CC, Neumann MG (1994) Time-dependent spectrophotometric study of the interaction of basic-dyes with clays. 1. Methylene-blue and neutral red on Montmorrillonite and Hectorite. Langmuir 10(10):3749–3753

    Article  CAS  Google Scholar 

  79. Lofaj M, Valent I, Bujdák J (2013) Mechanism of rhodamine 6G molecular aggregation in montmorillonite colloid. Cent Eur J Chem 11(10):1606–1619. doi:10.2478/s11532-013-0289-1

    CAS  Google Scholar 

  80. Arbeloa FL, Martinez VM, Arbeloa T, Arbeloa IL (2007) Photoresponse and anisotropy of rhodamine dye intercalated in ordered clay layered films. J Photochem Photobiol, C 8:85–108. doi:10.1016/j.jphotochemrev.2007.03.003

    Article  CAS  Google Scholar 

  81. Tsurumachi N, Okamoto H, Ishii K, Kohkami H, Nakanishi S, Ishii T, Takahashi N, Dou CS, Wen PH, Feng Q (2012) Formation of aggregates in nanohybrid material of dye molecules-titanate nanosheets. J Photochem Photobiol, A 243:1–6. doi:10.1016/j.jphotochem.2012.05.022

    Article  CAS  Google Scholar 

  82. Tsukamoto T, Shimada T, Takagi S (2013) Photochemical properties of mono-, Tr-, and penta-cationic antimony(V) metalloporphyrin derivatives on a clay layer surface. J Phys Chem A 117(33):7823–7832. doi:10.1021/jp405767s

    Article  CAS  Google Scholar 

  83. Hill EH, Zhang Y, Whitten DG (2015) Aggregation of cationic p-phenylene ethynylenes on Laponite clay in aqueous dispersions and solid films. J Colloid Interface Sci 449:347–356. doi:10.1016/j.jcis.2014.12.006

    Article  CAS  Google Scholar 

  84. Ishida Y, Shimada T, Tachibana H, Inoue H, Takagi S (2013) Regulation of the collisional self-quenching of fluorescence in clay/porphyrin complex by strong host-guest interaction. J Phys Chem A 116(49):12065–12072. doi:10.1021/jp309502j

    Article  CAS  Google Scholar 

  85. Ishida Y, Shimada T, Takagi S (2014) Surface-fixation induced emission of porphyrazine dye by a complexation with inorganic nanosheets. J Phys Chem C 118(35):20466–20471. doi:10.1021/jp506766t

    Article  CAS  Google Scholar 

  86. Ferreira AUC, Poli AL, Gessner F, Neumann MG, Cavalheiro CCS (2013) Interaction of Auramine O with montmorillonite clays. J Lumin 136:63–67. doi:10.1016/j.jlumin.2012.11.022

    Article  CAS  Google Scholar 

  87. Valandro SR, Poli AL, Neumann MG, Schmitt CC (2015) Photophysics of Auramine O adsorbed on solid clays. J Lumin 161:209–213. doi:10.1016/j.jlumin.2015.01.023

    Article  CAS  Google Scholar 

  88. Sun ZZ, Wang J, Wei HY, Wang GQ, Jian Y, Luo SZ, Zhou ZJ (2014) Spectroscopic investigation of a synthetic cyanine amine derivative upon various scaffolds. Anal Lett 47(16):2722–2730. doi:10.1080/00032719.2014.919505

    Article  CAS  Google Scholar 

  89. Chakraborty S, Debnath P, Dey D, Bhattacharjee D, Hussain SA (2014) Formation of fluorescent H-aggregates of a cyanine dye in ultrathin film and its effect on energy transfer. J Photochem Photobiol, A 293:57–64. doi:10.1016/j.jphotochem.2014.07.018

    Article  CAS  Google Scholar 

  90. Felbeck T, Behnke T, Hoffmann K, Grabolle M, Lezhnina MM, Kynast UH, Resch-Genger U (2013) Nile-red-nanoclay hybrids: red emissive optical probes for use in aqueous dispersion. Langmuir 29(36):11489–11497. doi:10.1021/la402165q

    Article  CAS  Google Scholar 

  91. Costa AL, Gomes AC, Pillinger M, Gonçalves IS, De melo JSS (2015) An indigo carmine-based hybrid nanocomposite with supramolecular control of dye aggregation and photobehavior. Chem Eur J 21 (34):12069–12078. doi:10.1002/chem.201501344

  92. Bujdák J, Iyi N (2002) Visible spectroscopy of cationic dyes in dispersions with reduced-charge montmorillonites. Clays Clay Miner 50(4):446–454

    Article  Google Scholar 

  93. Bujdák J, Iyi N, Sasai R (2004) Spectral properties, formation of dye molecular aggregates, and reactions in rhodamine 6G/layered silicate dispersions. J Phys Chem B 108(14):4470–4477. doi:10.1021/jp037607x

    Article  CAS  Google Scholar 

  94. Cione APP, Schmitt CC, Neumann MG, Gessner F (2000) The effect of added salt on the aggregation of clay particles. J Colloid Interface Sci 226(2):205–209

    Article  CAS  Google Scholar 

  95. Czímerová A, Bujdák J, Gáplovský A (2004) The aggregation of thionine and methylene blue dye in smectite dispersion. Colloids Surf A 243(1–3):89–96. doi:10.1016/j.solsurfa.2004.05.002

    Article  CAS  Google Scholar 

  96. Czímerová A, Bujdák J, Dohrmann R (2006) Traditional and novel methods for estimating the layer charge of smectites. Appl Clay Sci 34(1–4):2–13. doi:10.1016/j.clay.2006.02.008

    Article  CAS  Google Scholar 

  97. Bujdák J, Janek M, Madejová J, Komadel P (2001) Methylene blue interactions with reduced-charge smectites. Clays Clay Miner 49(3):244–254

    Article  Google Scholar 

  98. Bujdák J, Iyi N, Hrobáriková J, Fujita T (2002) Aggregation and decomposition of a pseudoisocyanine dye in dispersions of layered silicates. J Colloid Interface Sci 247(2):494–503. doi:10.1006/jcis.2001.8140

    Article  CAS  Google Scholar 

  99. Ishida Y, Masui D, Tachibana H, Inoue H, Shimada T, Takagi S (2012) Controlling the microadsorption structure of porphyrin dye assembly on clay surfaces using the “size-matching rule” for constructing an efficient energy transfer system. ACS Appl Mater Interfaces 4(2):811–816. doi:10.1021/am201465a

    Article  CAS  Google Scholar 

  100. Fujimura T, Shimada T, Hamatani S, Onodera S, Sasai R, Inoue H, Takagi S (2013) High density intercalation of porphyrin into transparent clay membrane without aggregation. Langmuir 29(16):5060–5065. doi:10.1021/la4003737

    Article  CAS  Google Scholar 

  101. Takagi S, Shimada T, Ishida Y, Fujimura T, Masui D, Tachibana H, Eguchi M, Inoue H (2013) Size-matching effect on inorganic nanosheets: control of distance, alignment, and orientation of molecular adsorption as a bottom-up methodology for nanomaterials. Langmuir 29(7):2108–2119. doi:10.1021/la3034808

    Article  CAS  Google Scholar 

  102. Chakraborty C, Dana K, Malik S (2011) Intercalation of perylenediimide dye into LDH clays: enhancement of photostability. J Phys Chem C 115(5):1996–2004. doi:10.1021/jp110486r

    Article  CAS  Google Scholar 

  103. Tani S, Yamaki H, Sumiyoshi A, Suzuki Y, Hasegawa S, Yamazaki S, Kawamata J (2009) Enhanced photodegradation of organic dyes adsorbed on a clay. J Nanosci Nanotechnol 9(1):658–661. doi:10.1166/jnn.2009.J081

    Article  CAS  Google Scholar 

  104. Chernia Z, Gill D (1999) Flattening of TMPyP adsorbed on laponite. Evidence in observed and calculated UV-vis spectra. Langmuir 15(5):1625–1633

    Article  CAS  Google Scholar 

  105. Miyamoto N, Kawai R, Kuroda K, Ogawa M (2000) Adsorption and aggregation of a cationic cyanine dye on layered clay minerals. Appl Clay Sci 16(3–4):161–170

    Article  CAS  Google Scholar 

  106. Miyamoto N, Kuroda K, Ogawa M (2004) Exfoliation and film preparation of a layered titanate, Na2Ti3O7, and intercalation of pseudoisocyanine dye. J Mater Chem 14(2):165–170. doi:10.1039/b308800f

    Article  CAS  Google Scholar 

  107. Bujdák J, Iyi N (2008) Spectral properties and structure of the J-aggregates of pseudoisocyanine dye in layered silicate films. J Colloid Interface Sci 326(2):426–432. doi:10.1016/j.jcis.2008.06.036

    Article  CAS  Google Scholar 

  108. Leone G, Giovanella U, Porzio W, Botta C, Ricci G (2011) In situ synthesis of fluorescent poly(norbornene)/oxazine-1 dye loaded fluoromica hybrids: supramolecular control over dye arrangement. J Mater Chem 21(34):12901–12909. doi:10.1039/c1jm11281c

    Article  CAS  Google Scholar 

  109. Sasai R, Iyi N, Fujita TH, Takagi K, Itoh H (2003) Synthesis of rhodamine 6G/cationic surfactant/clay hybrid materials and its luminescent characterization. Chem Lett 32(6):550–551

    Article  CAS  Google Scholar 

  110. Lang K, Kubat P, Mosinger J, Bujdak J, Hof M, Janda P, Sykora J, Iyi N (2008) Photoactive oriented films of layered double hydroxides. Phys Chem Chem Phys 10(30):4429–4434. doi:10.1039/b805081c

    Article  CAS  Google Scholar 

  111. Sun ZY, Jin L, Shi WY, Wei M, Evans DG, Duan X (2011) Controllable photoluminescence properties of an anion-dye-intercalated layered double hydroxide by adjusting the confined environment. Langmuir 27(11):7113–7120. doi:10.1021/la200846j

    Article  CAS  Google Scholar 

  112. Sasai R, Itoh T, Ohmori W, Itoh H, Kusunoki M (2009) Preparation and characterization of rhodamine 6G/Alkyltrimethylammonium/laponite hybrid solid materials with higher emission quantum yield. J Phys Chem C 113(1):415–421. doi:10.1021/jp805201n

    Article  CAS  Google Scholar 

  113. Sasai R, Itoh T, Iyi N, Takagi K, Itoh H (2005) Preparation of hybrid organic/inorganic luminescent thin solid films with highly concentrated laser-dye cations. Chem Lett 34(11):1490–1491. doi:10.1246/cl.2005.1490

    Article  CAS  Google Scholar 

  114. Salleres S, Arbeloa FL, Martinez V, Corcostegui C, Arbeloa IL (2009) Effect of surfactant C12TMA molecules on the self-association of R6G dye in thin films of laponite clay. Mater Chem Phys 116(2–3):550–556. doi:10.1016/j.matchemphys.2009.04.030

    Article  CAS  Google Scholar 

  115. Sasai R, Iyi N, Fujita T, Arbeloa FL, Martinez VM, Takagi K, Itoh H (2004) Luminescence properties of rhodamine 6G intercalated in surfactant/clay hybrid thin solid films. Langmuir 20(11):4715–4719. doi:10.1021/la049584z

    Article  CAS  Google Scholar 

  116. Kaya M, Meral K, Onganer Y (2015) Molecular aggregates of Merocyanine 540 in aqueous suspensions containing natural and CTAB-modified bentonite. J Mol Struct 1083:101–105. doi:10.1016/j.molstruc.2014.11.046

    Article  CAS  Google Scholar 

  117. Belušáková S, Lang K, Bujdák J (2015) Hybrid systems based on layered silicate and organic dyes for cascade energy transfer. J Phys Chem C 119:21784–21794. doi:10.1021/acs.jpcc.5b04982

    Article  CAS  Google Scholar 

  118. Salleres S, Arbeloa FL, Martinez VM, Arbeloa T, Arbeloa IL (2010) On the arrangements of R6G molecules in organophilic C12TMA/lap clay films for low dye loadings. Langmuir 26(2):930–937. doi:10.1021/la902414n

    Article  CAS  Google Scholar 

  119. Konno S, Fujimura T, Otani Y, Shimada T, Inoue H, Takagi S (2014) Microstructures of the porphyrin/viologen mono layer on the clay surface: segregation or integration? J Phys Chem C 118(35):20504–20510. doi:10.1021/jp5076274

    Article  CAS  Google Scholar 

  120. Sasai R, Iyi N, Kusumoto H (2011) Luminous change of rhodamine 3B incorporated into titanate nanosheet/decyltrimethylammonium hybrids under humid atmosphere. Bull Chem Soc Jpn 84(5):562–568. doi:10.1246/bcsj.20100343

    Article  CAS  Google Scholar 

  121. Ishida Y, Kulasekharan R, Shimada T, Ramamurthy V, Takagi S (2014) Supramolecular-surface photochemistry: supramolecular assembly organized on a clay surface facilitates energy transfer between an encapsulated donor and a free acceptor. J Phys Chem C 118(19):10198–10203. doi:10.1021/jp502816j

    Article  CAS  Google Scholar 

  122. Matejdes M, Czímerová A, Janek M (2015) Fluorescence tuning of 2D montmorillonite optically active layers with beta-cyclodextrine/dye supramolecular complexes. Appl Clay Sci 114:9–19. doi:10.1016/j.clay.2015.05.002

    Article  CAS  Google Scholar 

  123. Yurekli K, Conley E, Krishnamoorti R (2005) Effect of laponite and a nonionic polymer on the absorption character of cationic dye solutions. Langmuir 21(13):5825–5830. doi:10.1021/la047540k

    Article  CAS  Google Scholar 

  124. Vanamudan A, Pamidimukkala P (2015) Chitosan, nanoclay and chitosan-nanoclay composite as adsorbents for Rhodamine-6G and the resulting optical properties. Int J Biol Macromol 74:127–135. doi:10.1016/j.ijbiomac.2014.11.009

    Article  CAS  Google Scholar 

  125. Czimerová A, Jankovič L, Madejová J, Čeklovský A (2013) Unique photoactive nanocomposites based on rhodamine 6G/polymer/montmorillonite hybrid systems. J Polym Sci, Part B: Polym Phys 51(23):1672–1679. doi:10.1002/polb.23382

    Article  CAS  Google Scholar 

  126. Holzheu S, Hoffmann H (2002) Adsorption study of cationic dyes having a trimethylammonium anchor group on hectorite using electrooptic and spectroscopic methods. J Colloid Interface Sci 245(1):16–23. doi:10.1006/jcis.2001.7978

    Article  CAS  Google Scholar 

  127. Bujdák J, Iyi N (2005) Molecular orientation of rhodamine dyes on surfaces of layered silicates. J Phys Chem B 109(10):4608–4615

    Article  CAS  Google Scholar 

  128. Miyamoto N, Kuroda K, Ogawa M (2001) Uni-directional orientation of cyanine dye aggregates on a K4Nb6O17 single crystal: toward novel supramolecular assemblies with three-dimensional anisotropy. J Am Chem Soc 123(28):6949–6950. doi:10.1021/ja015541i

    Article  CAS  Google Scholar 

  129. Hähner G, Marti A, Spencer ND, Caseri WR (1996) Orientation and electronic structure of methylene blue on mica: A near edge x-ray absorption fine structure spectroscopy study. J Chem Phys 104(19):7749–7757

    Article  Google Scholar 

  130. Fischer D, Caseri WR, Hahner G (1998) Orientation and electronic structure of ion exchanged dye molecules on mica: an X-ray absorption study. J Colloid Interface Sci 198(2):337–346

    Article  CAS  Google Scholar 

  131. Wang HH, Han DX, Li N, Li KE (2005) Study on the intercalation and interlayer state of porphyrins into alpha-zirconium phosphate. J Incl Phenom Macrocycl Chem 52(3–4):247–252. doi:10.1007/s10847-004-7597-1

    CAS  Google Scholar 

  132. Čeklovský A, Bujdák J, Czímerová A, Iyi N (2007) Spectral study on the molecular orientation of a tetracationic porphyrin dye on the surface of layered silicates. Cent Eur J Phys 5(2):236–243. doi:10.2478/s11534-007-0010-0

    Google Scholar 

  133. Hayashi H, Hudson MJ (1995) Intercalation of the Copper(II) phthalocyanine Tetrasulfonate Anion (CuPcTs4-) into basic Copper(II) salts. J Mater Chem 5(5):781–783. doi:10.1039/jm9950500781

    Article  CAS  Google Scholar 

  134. Yan D, Lu J, Ma J, Wei M, Li S, Evans DG, Duan X (2011) Near-infrared absorption and polarized luminescent ultrathin films based on sulfonated cyanines and layered double hydroxide. J Phys Chem C 115(16):7939–7946. doi:10.1021/jp2002029

    Article  CAS  Google Scholar 

  135. Windsor SA, Tinker MH (1999) Electro-fluorescence polarization studies of the interaction of fluorescent dyes with clay minerals in suspensions. Colloids Surf A 148(1–2):61–73

    Article  CAS  Google Scholar 

  136. Salleres S, Arbeloa FL, Martinez VM, Arbeloa T, Arbeloa IL (2009) Improving the fluorescence polarization method to evaluate the orientation of fluorescent systems adsorbed in ordered layered materials. J Lumin 129(11):1336–1340. doi:10.1016/j.jlumin.2009.06.022

    Article  CAS  Google Scholar 

  137. López Arbeloa F, Martínez Martínez V (2006) New fluorescent polarization method to evaluate the orientation of adsorbed molecules in uniaxial 2D layered materials. J Photochem Photobiol, A 181(1):44–49

    Article  CAS  Google Scholar 

  138. López Arbeloa F, Martínez Martínez V (2006) Orientation of adsorbed dyes in the interlayer space of clays. 2 fluorescence polarization of rhodamine 6G in laponite films. Chem Mater 18 (6):1407–1416

    Google Scholar 

  139. Martinez V, Salleres S, Banuelos J, Arbeloa FL (2006) Application of fluorescence with polarized light to evaluate the orientation of dyes adsorbed in layered materials. J Fluoresc 16(2):233–240. doi:10.1007/s10895-005-0042-z

    Article  CAS  Google Scholar 

  140. Bujdák J, Czímerová A, Arbeloa FL (2011) Two-step resonance energy transfer between dyes in layered silicate films. J Colloid Interface Sci 364(2):497–504. doi:10.1016/j.jcis.2011.08.042

    Article  CAS  Google Scholar 

  141. Eguchi M, Tachibana H, Takagi S, Tryk DA, Inoue H (2007) Dichroic measurements on dicationic and tetracationic porphyrins on clay surfaces with visible-light-attenuated total reflectance. Bull Chem Soc Jpn 80:1350–1356. doi:10.1246/bcsj.80.1350

    Article  CAS  Google Scholar 

  142. Yamaoka K, Sasai R, Takata N (2000) Electric linear dichroism. A powerful method for the ionic chromophore-colloid system as exemplified by dye and montmorillonite suspensions. Colloids Surf, A 175 (1–2):23-39

    Google Scholar 

  143. Inadomi T, Ikeda S, Okumura Y, Kikuchi H, Miyamoto N (2014) Photo-induced anomalous deformation of poly(N-Isopropylacrylamide) gel hybridized with an inorganic nanosheet liquid crystal aligned by electric field. Macromol Rapid Commun 35(20):1741–1746. doi:10.1002/marc.201400333

    Article  CAS  Google Scholar 

  144. Egawa T, Watanabe H, Fujimura T, Ishida Y, Yamato M, Masui D, Shimada T, Tachibana H, Yoshida H, Inoue H, Takagi S (2011) Novel methodology to control the adsorption structure of cationic porphyrins on the clay surface using the “size-matching rule”. Langmuir 27(17):10722–10729. doi:10.1021/la202231k

    Article  CAS  Google Scholar 

  145. Čeklovský A, Takagi S, Bujdák J (2011) Study of spectral behaviour and optical properties of cis/trans-bis (N-methylpyridinium-4-yl)diphenyl porphyrin adsorbed on layered silicates. J Colloid Interface Sci 360(1):26–30. doi:10.1016/j.jcis.2011.04.010

    Article  CAS  Google Scholar 

  146. Čeklovský A, Czímerová A, Lang K, Bujdák J (2009) Effect of the layer charge on the interaction of porphyrin dyes in layered silicates dispersions. J Lumin 129(9):912–918. doi:10.1016/j.jlumin.2009.03.032

    Article  CAS  Google Scholar 

  147. Čeklovský A, Czímerová A, Lang K, Bujdák J (2009) Layered silicate films with photochemically active porphyrin cations. Pure Appl Chem 81(8):1385–1396. doi:10.1351/pac-con-08-08-35

    Article  CAS  Google Scholar 

  148. Hattori T, Tong ZW, Kasuga Y, Sugito Y, Yui T, Takagi K (2006) Hybridization of layered niobates with cationic dyes. Res Chem Intermed 32(7):653–669

    Article  CAS  Google Scholar 

  149. Yui T, Kobayashi Y, Yamada Y, Tsuchino T, Yano K, Kajino T, Fukushima Y, Torimoto T, Inoue H, Takagi K (2006) Photochemical electron transfer though the interface of hybrid films of titania nano-sheets and mono-dispersed spherical mesoporous silica particles. Phys Chem Chem Phys 8(39):4585–4590. doi:10.1039/b609779k

    Article  CAS  Google Scholar 

  150. Ishida Y, Shimada T, Masui D, Tachibana H, Inoue H, Takagi S (2011) Efficient excited energy transfer reaction in clay/porphyrin complex toward an artificial light-harvesting system. J Am Chem Soc 133(36):14280–14286. doi:10.1021/ja204425u

    Article  CAS  Google Scholar 

  151. Bujdák J, Ratulovská J, Donauerová A, Bujdáková H (2016) Hybrid materials based on luminescent alkaloid berberine and saponite. J Nanosci Nanotechnol 16(8):7801–7804

    Google Scholar 

  152. Benard S, Leaustic A, Riviere E, Yu P, Clement R (2001) Interplay between magnetism and photochromism in spiropyran-MnPS3 intercalation compounds. Chem Mater 13(10):3709–3716. doi:10.1021/cm011019j

    Article  CAS  Google Scholar 

  153. Ogawa M, Yamamoto M, Kuroda K (2001) Intercalation of an amphiphilic azobenzene derivative into the interlayer space of a layered silicate, magadiite. Clay Miner 36(2):263–266

    Article  CAS  Google Scholar 

  154. Ogawa M, Ishii T, Miyamoto N, Kuroda K (2003) Intercalation of a cationic azobenzene into montmorillonite. Appl Clay Sci 22(4):179–185. doi:10.1016/s0169-1317(02)00157-6

    Article  CAS  Google Scholar 

  155. Bujdák J, Iyi N, Fujita T (2003) Isomerization of cationic azobenzene derivatives in dispersions and films of layered silicates. J Colloid Interface Sci 262(1):282–289. doi:10.1016/s0021-9797(03)00235-2

    Article  CAS  Google Scholar 

  156. Umemoto T, Ohtani Y, Tsukamoto T, Shimada T, Takagi S (2014) Pinning effect for photoisomerization of a dicationic azobenzene derivative by anionic sites of the clay surface. Chem Commun 50(3):314–316. doi:10.1039/c3cc47353h

    Article  CAS  Google Scholar 

  157. Ogawa M, Ishii T, Miyamoto N, Kuroda K (2001) Photocontrol of the basal spacing of azobenzene-magadiite intercalation compound. Adv Mater 13(14):1107–1109. doi:10.1002/1521-4095(200107)13:14<1107:AID-ADMA1107>3.0.CO;2-O

    Article  CAS  Google Scholar 

  158. Ogawa M (2002) Photoisomerization of azobenzene in the interlayer space of magadiite. J Mater Chem 12(11):3304–3307. doi:10.1039/b204031j

    Article  CAS  Google Scholar 

  159. Ishihara M, Hirase R, Mori M, Yoshioka H, Ueda Y (2009) Photoinduced spectral changes in hybrid thin films of functional dyes and inorganic layered material. Thin Solid Films 518(2):857–860. doi:10.1016/j.tsf.2009.07.103

    Article  CAS  Google Scholar 

  160. Gentili PL, Costantino U, Vivani R, Latterini L, Nocchetti M, Aloisi GG (2004) Preparation and characterization of zirconium phosphonate azobenzene intercalation compounds. A structural, photophysical and photochemical study. J Mater Chem 14 (10):1656–1662. doi:10.1039/b313828c

  161. Okada T, Sakai H, Ogawa M (2008) The effect of the molecular structure of a cationic azo dye on the photoinduced intercalation of phenol in a montmorillonite. Appl Clay Sci 40(1–4):187–192. doi:10.1016/j.clay.2007.09.001

    Article  CAS  Google Scholar 

  162. Okada T, Watanabe Y, Ogawa M (2005) Photoregulation of the intercalation behavior of phenol for azobenzene-clay intercalation compounds. J Mater Chem 15(9):987–992. doi:10.1039/b412707b

    Article  CAS  Google Scholar 

  163. Boutton C, Kauranen M, Persoons A, Keung MP, Jacobs KY, Schoonheydt RA (1997) Enhanced second-order optical nonlinearity of dye molecules adsorbed onto Laponite particles. Clays Clay Miner 45(3):483–485

    Article  CAS  Google Scholar 

  164. Ghofraniha N, Conti C, Ruocco G, Zamponi F (2009) Time-dependent nonlinear optical susceptibility of an out-of-equilibrium soft material. Phys Rev Lett 102 (3). doi:10.1103/PhysRevLett.102.038303

  165. Ghofraniha N, Conti C, Ruocco G (2007) Aging of the nonlinear optical susceptibility in doped colloidal suspensions. Phys Rev B 75 (22). doi:10.1103/PhysRevB.75.224203

  166. Laschewsky A, Wischerhoff E, Kauranen M, Persoons A (1997) Polyelectrolyte multilayer assemblies containing nonlinear optical dyes. Macromolecules 30(26):8304–8309

    Article  CAS  Google Scholar 

  167. Suzuki Y, Tenma Y, Nishioka Y, Kamada K, Ohta K, Kawamata J (2011) Efficient two-photon absorption materials consisting of cationic dyes and clay minerals. J Phys Chem C 115(42):20653–20661. doi:10.1021/jp203809b

    Article  CAS  Google Scholar 

  168. Suzuki Y, Tenma Y, Nishioka Y, Kawamata J (2012) Efficient nonlinear optical properties of dyes confined in interlayer nanospaces of clay minerals. Chem Asian J 7(6):1170–1179. doi:10.1002/asia.201200049

    Article  CAS  Google Scholar 

  169. Suzuki Y, Sugihara H, Satomi K, Tominaga M, Mochida S, Kawamata J (2014) Two-photon absorption properties of an acetylene derivative confined in the interlayer space of a smectite. Appl Clay Sci 96:116–119. doi:10.1016/j.clay.2014.01.014

    Article  CAS  Google Scholar 

  170. Epelde-Elezcano N, Duque-Redondo E, Martínez-Martínez V, Manzano H, López-Arbeloa I (2014) Preparation, photophysical characterization, and modeling of LDS722/Laponite 2D-Ordered hybrid films. Langmuir 30(33):10112–10117. doi:10.1021/la502081c

    Article  CAS  Google Scholar 

  171. Coradin T, Clement R, Lacroix PG, Nakatani K (1996) From intercalation to aggregation: nonlinear optical properties of stilbazolium chromophores-MPS3 layered hybrid materials. Chem Mater 8(8):2153–2158. doi:10.1021/cm960060x

    Article  CAS  Google Scholar 

  172. Kawamata J, Suzuki Y, Tenma Y (2010) Fabrication of clay mineral-dye composites as nonlinear optical materials. Philos Mag 90(17–18):2519–2527. doi:10.1080/14786430903581304

    Article  CAS  Google Scholar 

  173. Chakraborty S, Bhattacharjee D, Soda H, Tominaga M, Suzuki Y, Kawamata J, Hussain SA (2015) Temperature and concentration dependence of J-aggregate of a cyanine dye in a Laponite film fabricated by Langmuir-Blodgett technique. Appl Clay Sci 104:245–251. doi:10.1016/j.clay.2014.11.039

    Article  CAS  Google Scholar 

  174. Kawamata J, Hasegawa S (2006) Clay-assisted disaggregation and stabilization in hemicyanine Langmuir-Blodgett films. J Nanosci Nanotechnol 6(6):1620–1624. doi:10.1166/jnn.2006.235

    Article  CAS  Google Scholar 

  175. van Duffel B, Verbiest T, Van Elshocht S, Persoons A, De Schryver FC, Schoonheydt RA (2001) Fuzzy assembly and second harmonic generation of clay/polymer/dye monolayer films. Langmuir 17(4):1243–1249

    Article  CAS  Google Scholar 

  176. Dudkina MM, Tenkovtsev AV, Pospiech D, Jehnichen D, Häußler L, Leuteritz A (2005) Nanocomposites of NLO chromophore-modified layered silicates and polypropylene. J Polym Sci, Part B: Polym Phys 43(18):2493–2502. doi:10.1002/polb.20532

    Article  CAS  Google Scholar 

  177. Chao TY, Chang HL, Su WC, Wu JY, Jeng RJ (2008) Nonlinear optical polyimide/montmorillonite nanocomposites consisting of azobenzene dyes. Dyes Pigm 77(3):515–524. doi:10.1016/j.dyepig.2007.08.001

    Article  CAS  Google Scholar 

  178. Yui T, Kameyama T, Sasaki T, Torimoto T, Takagi K (2007) Pyrene-to-porphyrin excited singlet energy transfer in LBL-deposited LDH nanosheets. J Porphyrins Phthalocyanines 11(5–6):428–433

    Article  CAS  Google Scholar 

  179. Takagi S, Eguchi M, Shimada T, Hamatani S, Inoue H (2007) Energy transfer reaction of cationic porphyrin complexes on the clay surface: effect of sample preparation method. Res Chem Intermed 33(1–2):177–189

    Article  CAS  Google Scholar 

  180. Bujdák J, Chorvát D, Iyi N (2010) Resonance energy transfer between rhodamine molecules adsorbed on layered silicate particles. J Phys Chem C 114(2):1246–1252. doi:10.1021/jp9098107

    Article  CAS  Google Scholar 

  181. Ishida Y, Shimada T, Takagi S (2013) Artificial light-harvesting model in a self-assembly composed of cationic dyes and inorganic nanosheet. J Phys Chem C 117(18):9154–9163. doi:10.1021/jp4022757

    Article  CAS  Google Scholar 

  182. Lu LD, Jones RM, McBranch D, Whitten D (2002) Surface-enhanced superquenching of cyanine dyes as J-aggregates on Laponite clay nanoparticles. Langmuir 18(20):7706–7713. doi:10.1021/la0259306

    Article  CAS  Google Scholar 

  183. Eguchi M, Watanabe Y, Ohtani Y, Shimada T, Takagi S (2014) Switching of energy transfer reaction by the control of orientation factor between porphyrin derivatives on the clay surface. Tetrahedron Lett 55(16):2662–2666. doi:10.1016/j.tetlet.2014.03.027

    Article  CAS  Google Scholar 

  184. Ras RHA, van Duffel B, Van der Auweraer M, De Schryver FC, Schoonheydt RA (2003) Molecular and particulate organisation in dye-clay films prepared by the Langmuir-Blodgett method. 2001—a Clay Odyssey:473–480

    Google Scholar 

  185. Hussain SA, Schoonheydt RA (2010) Langmuir-blodgett monolayers of cationic dyes in the presence and absence of clay mineral layers: N, N′-Dioctadecyl thiacyanine. Octadecyl Rhodamine B and Laponite Langmuir 26(14):11870–11877. doi:10.1021/la101078f

    CAS  Google Scholar 

  186. Hussain SA, Chakraborty S, Bhattacharjee D, Schoonheydt RA (2010) Fluorescence resonance energy transfer between organic dyes adsorbed onto nano-clay and langmuir-blodgett (LB) films. Spectrochim Acta A Mol Biomol Spectrosc 75(2):664–670. doi:10.1016/j.saa.2009.11.037

    Article  CAS  Google Scholar 

  187. Dey D, Bhattacharjee D, Chakraborty S, Hussain SA (2013) Effect of nanoclay laponite and pH on the energy transfer between fluorescent dyes. J Photochem Photobiol, A 252:174–182

    Article  CAS  Google Scholar 

  188. Olivero F, Carniato F, Bisio C, Marchese L (2014) Promotion of forster resonance energy transfer in a saponite clay containing luminescent polyhedral oligomeric silsesquioxane and rhodamine dye. Chem Asian J 9(1):158–165. doi:10.1002/asia.201300936

    Article  CAS  Google Scholar 

  189. Dey D, Saha J, Roy AD, Bhattacharjee D, Hussain SA (2014) Development of an ion-sensor using fluorescence resonance energy transfer. Sens Actuators, B 195:382–388. doi:10.1016/j.snb.2014.01.065

    Article  CAS  Google Scholar 

  190. Saha J, Datta Roy A, Dey D, Chakraborty S, Bhattacharjee D, Paul PK, Hussain SA (2015) Investigation of fluorescence resonance energy transfer between fluorescein and rhodamine 6G. Spectrochim Acta A Mol Biomol Spectrosc 149. doi:10.1016/j.saa.2015.04.027

  191. Margulies L, Rozen H, Stern T, Rytwo G, Rubin B, Ruzo LO, Nir S, Cohen E (1993) Photostabilization of pesticides by clays and chromophores. Arch Insect Biochem Physiol 22(3–4):467–486

    Article  CAS  Google Scholar 

  192. Undabeytia T, Nir S, Tel-Or E, Rubin B (2000) Photostabilization of the herbicide norflurazon by using organoclays. J Agric Food Chem 48(10):4774–4779. doi:10.1021/jf9912405

    Article  CAS  Google Scholar 

  193. Si YB, Zhou J, Chen HM, Zhou DM (2004) Photo stabilization of the herbicide bensulfuron-methyl by using organoclays. Chemosphere 54(7):943–950. doi:10.1016/j.chemosphere.2003.09.033

    Article  CAS  Google Scholar 

  194. Kohno Y, Asai S, Shibata M, Fukuhara C, Maeda Y, Tomita Y, Kobayashi K (2014) Improved photostability of hydrophobic natural dye incorporated in organo-modified hydrotalcite. J Phys Chem Solids 75(8):945–950. doi:10.1016/j.jpcs.2014.04.010

    Article  CAS  Google Scholar 

  195. Samuels M, Mor O, Rytwo G (2013) Metachromasy as an indicator of photostabilization of methylene blue adsorbed to clays and minerals. J Photochem Photobiol, B 121:23–26. doi:10.1016/j.jphotobiol.2013.02.004

    Article  CAS  Google Scholar 

  196. Kohno Y, Totsuka K, Ikoma S, Yoda K, Shibata M, Matsushima R, Tomita Y, Maeda Y, Kobayashi K (2009) Photostability enhancement of anionic natural dye by intercalation into hydrotalcite. J Colloid Interface Sci 337(1):117–121. doi:10.1016/j.jcis.2009.04.065

    Article  CAS  Google Scholar 

  197. Kohno Y, Kinoshita R, Ikoma S, Yoda K, Shibata M, Matsushima R, Tomita Y, Maeda Y, Kobayashi K (2009) Stabilization of natural anthocyanin by intercalation into montmorillonite. Appl Clay Sci 42(3–4):519–523. doi:10.1016/j.clay.2008.06.012

    Article  CAS  Google Scholar 

  198. Ogawa M, Sohmiya M, Watase Y (2011) Stabilization of photosensitizing dyes by complexation with clay. Chem Commun 47(30):8602–8604. doi:10.1039/c1cc12392k

    Article  CAS  Google Scholar 

  199. Shinozaki R, Nakato T (2008) Photochemical behavior of rhodamine 6G dye intercalated in photocatalytically active layered hexaniobate. Microporous Mesoporous Mater 113(1–3):81–89. doi:10.1016/j.micromeso.2007.11.005

    Article  CAS  Google Scholar 

  200. Wang P, Cheng MM, Zhang ZH (2014) On different photodecomposition behaviors of rhodamine B on laponite and montmorillonite clay under visible light irradiation. J Saudi Chem Soc 18(4):308–316. doi:10.1016/j.jscs.2013.11.006

    Article  CAS  Google Scholar 

  201. Raha S, Ivanov I, Quazi NH, Bhattacharya SN (2009) Photo-stability of rhodamine-B/montmorillonite nanopigments in polypropylene matrix. Appl Clay Sci 42(3–4):661–666. doi:10.1016/j.clay.2008.06.008

    CAS  Google Scholar 

  202. Shinozaki R, Nakato T (2008) Photoelectrochemical behavior of a rhodamine dye intercalated in a photocatalytically active layered niobate and photochemically inert clay. J Ceram Soc Jpn 116(1352):555–560

    Article  CAS  Google Scholar 

  203. Morimoto K, Tamura K, Iyi N, Ye JH, Yamada H (2011) Adsorption and photodegradation properties of anionic dyes by layered double hydroxides. J Phys Chem Solids 72(9):1037–1045. doi:10.1016/j.jpcs.2011.05.018

    Article  CAS  Google Scholar 

  204. Caine MA, McCabe RW, Wang LC, Brown RG, Hepworth JD (2001) The influence of singlet oxygen in the fading of carbonless copy paper primary dyes on clays. Dyes Pigm 49(3):135–143

    Article  CAS  Google Scholar 

  205. Bujdák J, Jurečeková J, Bujdáková H, Lang K, Šeršeň F (2009) Clay mineral particles as efficient carriers of methylene blue used for antimicrobial treatment. Environ Sci Technol 43(16):6202–6207. doi:10.1021/es900967g

    Article  CAS  Google Scholar 

  206. Demel J, Kubat P, Jirka I, Kovar P, Pospisil M, Lang K (2010) Inorganic-organic hybrid materials: layered zinc hydroxide salts with intercalated porphyrin sensitizers. J Phys Chem C 114(39):16321–16328. doi:10.1021/jp106116n

    Article  CAS  Google Scholar 

  207. Kafunkova E, Taviot-Gueho C, Bezdicka P, Klementova M, Kovar P, Kubat P, Mosinger J, Pospisil M, Lang K (2010) Porphyrins intercalated in Zn/Al and Mg/Al layered double hydroxides: properties and structural arrangement. Chem Mater 22(8):2481–2490. doi:10.1021/cm903125v

    Article  CAS  Google Scholar 

  208. Jirickova M, Demel J, Kubat P, Hostomsky J, Kovanda F, Lang K (2011) Photoactive self-standing films made of layered double hydroxides with arranged porphyrin molecules. J Phys Chem C 115(44):21700–21706. doi:10.1021/jp207505n

    Article  CAS  Google Scholar 

  209. Madhavan D, Pitchumani K (2002) Photoreactions in clay media: singlet oxygen oxidation of electron-rich substrates mediated by clay-bound dyes. J Photochem Photobiol, A 153(1–3):205–210

    Article  CAS  Google Scholar 

  210. Bujdák J, Iyi N, Fujita T (2002) Aggregation and stability of 1,1′-diethyl-4,4′-cyanine dye on the surface of layered silicates with different charge densities. Colloids Surf A 207(1–3):207–214

    Article  Google Scholar 

  211. Bujdák J, Iyi N, Fujita T (2003) Control of optical properties of adsorbed cyanine dyes via negative charge distribution on layered silicates. Solid State Chemistry V 90–91:463–468

    Google Scholar 

  212. Liu PF, Liu P, Zhao KC, Li L (2015) Photostability enhancement of azoic dyes adsorbed and intercalated into Mg-Al-layered double hydroxide. Opt Laser Technol 74:23–28

    Article  CAS  Google Scholar 

  213. Kohno Y, Ito M, Kurata M, Ikoma S, Shibata M, Matsushima R, Tomita Y, Maeda Y, Kobayashi K (2011) Photo-induced coloration of 2-hydroxychalcone in the clay interlayer. J Photochem Photobiol, A 218(1):87–92. doi:10.1016/j.jphotochem.2010.12.007

    Article  CAS  Google Scholar 

  214. Chakraborty S, Bhattacharjee D, Hussain SA (2014) Formation and control of excimer of a coumarin derivative in Langmuir-Blodgett films. J Lumin 145:824–831. doi:10.1016/j.jlumin.2013.09.001

    Article  CAS  Google Scholar 

  215. Miyata H, Sugahara Y, Kuroda K, Kato C (1988) Synthesis of a viologen-tetratitanate intercalation. compound and its photochemical behaviour. J Chem Soc, Faraday Trans 84:2677–2682. doi:10.1039/f19888402677

    Article  CAS  Google Scholar 

  216. Miyamoto N, Kuroda K, Ogawa M (2004) Visible light induced electron transfer and long-lived charge separated state in cyanine dye/layered titanate intercalation compounds. J Phys Chem B 108(14):4268–4274. doi:10.1021/jp035617s

    Article  CAS  Google Scholar 

  217. Okada T, Matsutomo T, Ogawa M (2010) Nanospace engineering of methylviologen modified hectorite-like layered silicates with varied layer charge density for the adsorbents design. J Phys Chem C 114(1):539–545. doi:10.1021/jp9089886

    Article  CAS  Google Scholar 

  218. Batista T, Chiorcea-Paquim AM, Brett AMO, Schmitt CC, Neumann MG (2011) Laponite RD/polystyrenesulfonate nanocomposites obtained by photopolymerization. Appl Clay Sci 53(1):27–32. doi:10.1016/j.clay.2011.04.007

    Article  CAS  Google Scholar 

  219. Shiragami T, Mori Y, Matsumoto J, Takagi S, Inoue H, Yasuda M (2006) Non-aggregated adsorption of cationic metalloporphyrin dyes onto nano-clay sheets films. Colloids Surf A 284:284–289. doi:10.1016/j.colsurfa.2005.11.102

    Article  CAS  Google Scholar 

  220. Kakegawa N, Ogawa M (2004) Effective luminescence quenching of tris(2,2-bipyridine)ruthenium(II) by methylviologen on clay by the aid of poly(vinylpyrrolidone). Langmuir 20(17):7004–7009. doi:10.1021/la036213u

    Article  CAS  Google Scholar 

  221. de Souza GR, Fertonani FL, Pastre IA (2003) Espectroelectrochemical behavior of clay-dye structured systems. Ecletica Quim 28(1):77–83

    Article  Google Scholar 

  222. Lazarin AM, Airoldi C (2008) Methylene blue intercalated into calcium phosphate—electrochemical properties and an ascorbic acid oxidation study. Solid State Sci 10(9):1139–1144. doi:10.1016/j.solidstatesciences.2007.11.023

    Article  CAS  Google Scholar 

  223. Dilgin Y, Nisli G (2006) Flow injection photoamperometric investigation of ascorbic acid using methylene blue immobilized on titanium phosphate. Anal Lett 39(3):451–465. doi:10.1080/000032710500536053

    Article  CAS  Google Scholar 

  224. Lazarin AM, Airoldi C (2004) Intercalation of methylene blue into barium phosphate-synthesis and electrochemical investigation. Anal Chim Acta 523(1):89–95. doi:10.1016/j.aca.2004.05.063

    Article  CAS  Google Scholar 

  225. Sumitani M, Takagi S, Tanamura Y, Inoue H (2004) Oxygen indicator composed of an organic/inorganic hybrid compound of methylene blue, reductant, surfactant and saponite. Anal Sci 20(8):1153–1157

    Article  CAS  Google Scholar 

  226. Shan D, Mousty C, Cosnier S, Mu SL (2003) A new Polyphenol oxidase biosensor mediated by azure B in laponite clay matrix. Electroanalysis 15(19):1506–1512. doi:10.1002/elan.200302740

    Article  CAS  Google Scholar 

  227. Ishihara S, Iyi N, Labuta J, Deguchi K, Ohki S, Tansho M, Shimizu T, Yamauchi Y, Sahoo P, Naito M, Abe H, Hill JP, Ariga K (2013) Naked-eye discrimination of methanol from ethanol using composite film of oxoporphyrinogen and layered double hydroxide. ACS Appl Mater Interfaces 5(13):5927–5930. doi:10.1021/am401956s

    Article  CAS  Google Scholar 

  228. Dey D, Bhattacharjee D, Chakraborty S, Hussain SA (2013) Development of hard water sensor using fluorescence resonance energy transfer. Sens Actuators, B 184:268–273. doi:10.1016/j.snb.2013.04.077

    Article  CAS  Google Scholar 

  229. Esposito A, Raccurt O, Charmeau JY, Duchet-Rumeau J (2010) Functionalization of cloisite 30B with fluorescent dyes. Appl Clay Sci 50(4):525–532. doi:10.1016/j.clay.2010.10.007

    Article  CAS  Google Scholar 

  230. Bur AJ, Roth SC, Start PR, Lee YH, Maupin PH (2007) Monitoring clay exfoliation during polymer/clay compounding using fluorescence spectroscopy. Trans Inst Measur Control 29(5):403–416. doi:10.1177/0142331207073486

    Article  Google Scholar 

  231. Banerjee S, Joshi M, Ghosh AK (2010) A spectroscopic approach for structural characterization of polypropylene/clay nanocomposite. Polym Compos 31(12):2007–2016. doi:10.1002/pc.20998

    Article  CAS  Google Scholar 

  232. Gitis V, Dlugy C, Ziskind G, Sladkevich S, Lev O (2011) Fluorescent clays-similar transfer with sensitive detection. Chem Eng J 174(1):482–488. doi:10.1016/j.cej.2011.08.063

    Article  CAS  Google Scholar 

  233. Marquez AES, Lerner DA, Fetter G, Bosch P, Tichit D, Palomares E (2014) Preparation of layered double hydroxide/chlorophyll a hybrid nano-antennae: a key step. Dalton Trans 43(27):10521–10528. doi:10.1039/c4dt00113c

    Article  CAS  Google Scholar 

  234. Teixeira-Neto ÃA, Izumi CMS, Temperini MLA, Ferreira AMDC, Constantino VRL (2012) Hybrid materials based on smectite clays and nutraceutical anthocyanins from the Açaí fruit. Eur J Inorg Chem 32:5411–5420. doi:10.1002/ejic.201200702

    Article  CAS  Google Scholar 

  235. Choy JH, Kim YK, Son YH, Bin Choy Y, Oh JM, Jung H, Hwang SJ (2008) Nanohybrids of edible dyes intercalated in ZnAl layered double hydroxides. J Phys Chem Solids 69(5–6):1547–1551. doi:10.1016/j.jpcs.2007.11.009

    Article  CAS  Google Scholar 

  236. Saelim NO, Magaraphan R, Sreethawong T (2011) Preparation of sol-gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells. Energy Convers Manage 52(8–9):2815–2818. doi:10.1016/j.enconman.2011.02.016

    Article  CAS  Google Scholar 

  237. Kolesnikov MP, Kritsky MS (2001) Study of chemical structure and of photochemical activity of abiogenic flavin pigment. J Evol Biochem Physiol 37(5):507–514

    Article  CAS  Google Scholar 

  238. Donauerová A, Bujdák J, Smolinská M, Bujdáková H (2015) Photophysical and antibacterial properties of complex systems based on smectite, a cationic surfactant and methylene blue. J Photochem Photobiol, B 151:135–141. doi:10.1016/j.jphotobiol.2015.07.018

    Article  CAS  Google Scholar 

  239. Li DD, Miao CL, Wang XD, Yu XH, Yu JH, Xu RR (2013) AIE cation functionalized layered zirconium phosphate nanoplatelets: ion-exchange intercalation and cell imaging. Chem Commun 49(83):9549–9551. doi:10.1039/c3cc45041d

    Article  CAS  Google Scholar 

  240. Kuo YM, Kuthati Y, Kankala RK, Wei PR, Weng CF, Liu CL, Sung PJ, Mou CY, Lee CH (2015) Layered double hydroxide nanoparticles to enhance organ-specific targeting and the anti-proliferative effect of cisplatin. J Mater Chem B 3(17):3447–3458. doi:10.1039/c4tb01989j

    Article  CAS  Google Scholar 

  241. Rozen H, Margulies L (1991) Photostabilization of tetrahydro-2-(nitromethylene)-2H-1,3-thiazine adsorbed on clays. J Agric Food Chem 39(7):1320–1325

    Article  CAS  Google Scholar 

  242. Banerjee K, Dureja P (1995) Photostabilization of quinalphos by crystal violet on the surface of kaolinite and palygorskite. Pestic Sci 43(4):333–337

    Article  CAS  Google Scholar 

  243. Kievani MB, Edraki M (2015) Synthesis, characterization and assessment thermal properties of clay based nanopigments. Front Chem Sci Eng 9(1):40–45. doi:10.1007/s11705-015-1505-7

    Article  CAS  Google Scholar 

  244. Beltran MI, Benavente V, Marchante V, Dema H, Marcilla A (2014) Characterisation of montmorillonites simultaneously modified with an organic dye and an ammonium salt at different dye/salt ratios. Properties of these modified montmorillonites EVA nanocomposites. Appl Clay Sci 97–98:43–52. doi:10.1016/j.clay.2014.06.001

    Article  CAS  Google Scholar 

  245. Marchante V, Benavente V, Marcilla A, Martinez-Verdu FM, Beltran MI (2013) Ethylene vinyl acetate/nanoclay-based pigment composites: morphology, rheology, and mechanical, thermal, and colorimetric properties. J Appl Polym Sci 130(4):2987–2994. doi:10.1002/app.39422

    Article  CAS  Google Scholar 

  246. Marchante V, Marcilla A, Benavente V, Martinez-Verdu FM, Beltran MI (2013) Linear low-density polyethylene colored with a nanoclay-based pigment: morphology and mechanical, thermal, and colorimetric properties. J Appl Polym Sci 129(5):2716–2726. doi:10.1002/app.38903

    Article  CAS  Google Scholar 

  247. Aloisi GG, Costantino U, Latterini L, Nocchetti M, Camino G, Frache A (2006) Preparation and spectroscopic characterisation of intercalation products of clay and of clay-polypropylene composites with rhodamine B. J Phys Chem Solids 67(5–6):909–914. doi:10.1016/j.jpcs.2006.01.003

    Article  CAS  Google Scholar 

  248. Smitha VS, Manjumol KA, Ghosh S, Brahmakumar M, Pavithran C, Perumal P, Warrier KG (2011) Rhodamine 6G intercalated montmorillonite nanopigments-polyethylene composites: facile synthesis and ultravioletstability study. J Am Ceram Soc 94(6):1731–1736. doi:10.1111/j.1551-2916.2010.04326.x

    Article  CAS  Google Scholar 

  249. Zimmermann A, Jaerger S, Zawadzki SF, Wypych F (2013) Synthetic zinc layered hydroxide salts intercalated with anionic azo dyes as fillers into high-density polyethylene composites: first insights. J Polym Res 20(9). doi:10.1007/s10965-013-0224-3

  250. da Silva MLN, Marangoni R, da Silva AH, Wypych F, Schreiner WH (2013) Poly(vinyl alcohol) composites containing layered hydroxide salts, intercalated with anionic azo dyes (Tropaeolin 0 and Tropaeolin 0). Polimeros 23(2):248–256. doi:10.1590/s0104-14282013005000026

    Google Scholar 

  251. Marangoni R, Gardolinski J, Mikowski A, Wypych F (2011) PVA nanocomposites reinforced with Zn2Al LDHs, intercalated with orange dyes. J Solid State Electrochem 15(2):303–311. doi:10.1007/s10008-010-1056-2

    Article  CAS  Google Scholar 

  252. Giovanella U, Leone G, Galeotti F, Mroz W, Meinardi F, Botta C (2014) FRET-assisted deep-blue electroluminescence in intercalated polymer hybrids. Chem Mater 26(15):4572–4578. doi:10.1021/cm501870e

    Article  CAS  Google Scholar 

  253. Rafiemanzelat F, Adli V, Mallakpour S (2015) Effective preparation of clay/waterborne Azo-containing polyurethane nanocomposite dispersions incorporated anionic groups in the chain termini. Des Monomers Polym 18(4):303–314. doi:10.1080/15685551.2014.999459

    Article  CAS  Google Scholar 

  254. Monteiro A, Jarrais B, Rocha IM, Pereira C, Pereira MFR, Freire C (2014) Efficient immobilization of montmorillonite onto cotton textiles through their functionalization with organosilanes. Appl Clay Sci 101:304–314. doi:10.1016/j.clay.2014.08.019

    Article  CAS  Google Scholar 

  255. Zavodchikova AA, Safonov VV, Solina EV, Ivanov VB (2014) Ultraviolet paints based on nanopigments for printing on textile materials. Text Res J 84(13):1400–1410. doi:10.1177/0040517514523177

    Article  CAS  Google Scholar 

  256. Ito K, Kuwabara M, Fukunishi K, Fujiwara Y (1997) Thermal recording media using clay-fluoran dye intercalation as a stable colour former. Dyes Pigm 34(4):297–306

    Article  CAS  Google Scholar 

  257. Ito K, Zhou N, Fukunishi K, Fujiwara Y (1994) Potential use of clay-cationic dye complex for dye fixation in thermal dye-transfer printing. J Imaging Sci Technol 38(6):575–579

    CAS  Google Scholar 

  258. Ito K, Kuwabara M, Fukunishi K, Fujiwara Y (1996) Application of clay-cationic dye intercalation to image fixation in thermal dye transfer printing. J Imaging Sci Technol 40(3):275–280

    CAS  Google Scholar 

  259. Takashima M, Sano S, Ohara S (1993) Improved fastness of carbonless paper color images with a new trimethine leuco dye. J Imaging Sci Technol 37(2):163–166

    CAS  Google Scholar 

  260. Ito K, Fukunishi K (1997) Alternate intercalation of fluoran dye and tetra-n-decylammonium ion induced by electrolysis in acetone-clay suspension. Chem Lett 4:357–358

    Article  Google Scholar 

  261. Hassanien MM, Abou-El-Sherbini KS, Al-Muaikel NS (2010) Immobilization of methylene blue onto bentonite and its application in the extraction of mercury (II). J Hazard Mater 178(1–3):94–100. doi:10.1016/j.jhazmat.2010.01.048

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0291-11, APVV-15-0347. Support from Grant Agency VEGA (1/0278/16) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Bujdák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Bujdák, J. (2017). Hybrids with Functional Dyes. In: Nakato, T., Kawamata, J., Takagi, S. (eds) Inorganic Nanosheets and Nanosheet-Based Materials. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56496-6_18

Download citation

Publish with us

Policies and ethics