Skip to main content

Optogenetics Research Using the Mouse as a Model System

  • Chapter
Optogenetics

Abstract

Smooth progress in the field of optogenetic research can be, as the suffix ‘-genetics’ indicates, expected using biological models that provide conditions suitable for genetic control or gene manipulation. The artificial expression of opsin molecules is expected to be carried out smoothly in mice compared with rats or non-human primates because of established inheritable genetic modification technologies in this species. However, when compared with the nematode or the fly, there are still many difficulties in the expression of opsin in mice if flexible gene manipulation is attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arenkiel BR, Peca J, Davison IG et al (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54:205–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beppu K, Sasaki T, Tanaka KF et al (2014) Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron 81:314–320

    Article  CAS  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Chuhma N, Tanaka KF, Hen R et al (2011) Functional connectome of the striatal medium spiny neuron. J Neurosci 31:1183–1192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gong S, Kus L, Heintz N (2010) Rapid bacterial artificial chromosome modification for large-scale mouse transgenesis. Nat Protoc 5:1678–1696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin JY, Lin MZ, Steinbach P et al (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803–1814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madisen L, Mao T, Koch H et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyazaki KW, Miyazaki K, Tanaka KF et al (2014) Optogenetic activation of dorsal raphe Serotonin neurons enhances patience for future rewards. Curr Biol. doi:10.1016/j.cub.2014.07.041

    PubMed  Google Scholar 

  • Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    Article  CAS  PubMed  Google Scholar 

  • Ohmura Y, Tanaka KF, Tsunematsu T et al (2014) Optogenetic activation of serotonergic neurons enhances anxiety-like behaviour in mice. Int J Neuropsychopharmacol 21:1–7

    Google Scholar 

  • Tanaka KF, Ahmari SE, Leonardo ED et al (2010) Flexible Accelerated STOP Tetracycline operator-knockin (FAST): a versatile and efficient new gene modulating system. Biol Psychiatry 67:770–773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka KF, Matsui K, Sasaki T et al (2012) Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system. Cell Rep 2:397–406

    Article  CAS  PubMed  Google Scholar 

  • Ting JT, Feng G (2013) Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience. Behav Brain Res 255:3–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsunematsu T, Tabuchi S, Tanaka KF et al (2013) Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav Brain Res 255:64–74

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu T, Ueno T, Tabuchi S et al (2014) Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 34:6896–6909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamazaki Y, Fujiwara H, Kaneko K et al (2014) Short- and long-term functional plasticity of white matter induced by oligodendrocyte depolarization in the hippocampus. Glia 62:1299–1312

    Article  PubMed  Google Scholar 

  • Yizhar O, Fenno LE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71:9–34

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Ting JT, Atallah HE et al (2011) Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 8:745–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji F. Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Tanaka, K.F. (2015). Optogenetics Research Using the Mouse as a Model System. In: Yawo, H., Kandori, H., Koizumi, A. (eds) Optogenetics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55516-2_15

Download citation

Publish with us

Policies and ethics