Skip to main content

Jump Performance Enhancement Induced by Countermovement

  • Chapter
Sports Performance
  • 2529 Accesses

Abstract

The execution of a countermovement prior to the main movement, during which the agonist muscles experience a stretch–shortening cycle (shortening after being lengthened) enhances the exercise performance outcome (countermovement effect). During the stretch–shortening cycle, the fascicles and tendons exhibit a unique behavior; much of the length changes of skeletal muscle occur in tendons while fascicles contract almost isometrically. The countermovement effect varies among individuals and changes through training (or practice). The dynamics of muscle fascicles and tendons may underlie the effects of interindividual differences and training on the countermovement effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander RM, Bennet-Clark HC (1977) Storage of elastic strain energy in muscle and other tissues. Nature 265(5590):114–117

    Article  CAS  PubMed  Google Scholar 

  • Arakawa H, Nagano A, Yoshioka S, Fukashiro S (2010) Interaction between elastic energy utilization and active state development within the work enhancing mechanism during countermovement. J Electromyogr Kinesiol 20(2):340–347

    Article  PubMed  Google Scholar 

  • Belli A, Bosco C (1992) Influence of stretch-shortening cycle on mechanical behaviour of triceps surae during hopping. Acta Physiol Scand 144(4):401–408

    Article  CAS  PubMed  Google Scholar 

  • Bobbert MF, Casius LJ (2005) Is the effect of a countermovement on jump height due to active state development? Med Sci Sports Exerc 37(3):440–446

    Article  PubMed  Google Scholar 

  • Bobbert MF, van Ingen Schenau GJ (1988) Coordination in vertical jumping. J Biomech 21(3):249–262

    Google Scholar 

  • Bobbert MF, Gerritsen KG, Litjens MC, Van Soest AJ (1996) Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc 28(11):1402–1412

    Article  CAS  PubMed  Google Scholar 

  • Bojsen-Møller J, Magnusson SP, Rasmussen LR, Kjaer M, Aagaard P (2005) Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol 99(3):986–994

    Article  PubMed  Google Scholar 

  • Bosco C, Komi PV, Ito A (1981) Prestretch potentiation of human skeletal muscle during ballistic movement. Acta Physiol Scand 111(2):135–140

    Article  CAS  PubMed  Google Scholar 

  • Bosco C, Montanari G, Ribacchi R, Giovenali P, Latteri F, Iachelli G, Faina M, Colli R, Dal Monte A, La Rosa M (1987) Relationship between the efficiency of muscular work during jumping and the energetics of running. Eur J Appl Physiol Occup Physiol 56(2):138–143

    Article  CAS  PubMed  Google Scholar 

  • Burgess KE, Connick MJ, Graham-Smith P, Pearson SJ (2007) Plyometric vs. isometric training influences on tendon properties and muscle output. J Strength Cond Res 21(3):986–989

    PubMed  Google Scholar 

  • Cavagna GA (1977) Storage and utilization of elastic energy in skeletal muscle. Exerc Sport Sci Rev 5:89–129

    Article  CAS  PubMed  Google Scholar 

  • Chapman AE, Caldwell GE, Selbie WS (1985) Mechanical output following muscle stretch in forearm supination against inertial loads. J Appl Physiol 59(1):78–86

    CAS  PubMed  Google Scholar 

  • Chimera NJ, Swanik KA, Swanik CB, Straub SJ (2004) Effects of plyometric training on muscle-activation strategies and performance in female athletes. J Athl Train 39(1):24–31

    PubMed Central  PubMed  Google Scholar 

  • Foure A, Nordez A, Cornu C (2010) Plyometric training effects on Achilles tendon stiffness and dissipative properties. J Appl Physiol 109(3):849–854

    Article  PubMed  Google Scholar 

  • Fukashiro S, Itoh M, Ichinose Y, Kawakami Y, Fukunaga T (1995) Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo. Eur J Appl Physiol Occup Physiol 71(6):555–557

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehisa H, Maganaris CN (2001) In vivo behaviour of human muscle tendon during walking. Proc Biol Sci 268(1464):229–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Häkkinen K, Pakarinen A, Kyrolainen H, Cheng S, Kim DH, Komi PV (1990) Neuromuscular adaptations and serum hormones in females during prolonged power training. Int J Sports Med 11(2):91–98

    Article  PubMed  Google Scholar 

  • Herbert RD, Crosbie J (1997) Rest length and compliance of nonimmobilised and immobilised rabbit soleus muscle and tendon. Eur J Appl Physiol Occup Physiol 76:472–479

    Article  CAS  PubMed  Google Scholar 

  • Herzog W, Leonard TR (2000) The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles. J Biomech 33(5):531–542

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (1951) The mechanics of voluntary muscle. Lancet 24:947–951

    Article  Google Scholar 

  • Hirayama K, Sugisaki N, Kato E, Kanehisa H, Fukunaga T, Kawakami Y (2010) Influence of tendon stiffness, muscle strength, and muscle activity on individual differences in mechanical work enhancement by a counter movement. Jpn J Phys Educ Health Sport Sci 55(1):33–43 (in Japanese)

    Article  Google Scholar 

  • Hirayama K, Yanai T, Kanehisa H, Fukunaga T, Kawakami Y (2012) Neural modulation of muscle-tendon control strategy after a single practice session. Med Sci Sports Exerc 44(8):1512–1518

    Article  PubMed  Google Scholar 

  • Hoffer JA, Caputi AA, Pose IE, Griffiths RI (1989) Roles of muscle activity and load on the relationship between muscle spindle length and whole muscle length in the freely walking cat. Prog Brain Res 80:75–85, discussion 57–60

    Article  CAS  PubMed  Google Scholar 

  • Huijing PA, Ettema GJ (1988/89) Length-force characteristics of aponeurosis in passive muscle and during isometric and slow dynamic contractions of rat gastrocnemius muscle. Acta Morphol Neerl Scand 26(1):51–62

    Google Scholar 

  • Iossifidou A, Baltzopoulos V, Giakas G (2005) Isokinetic knee extension and vertical jumping: are they related? J Sports Sci 23(10):1121–1127

    Article  PubMed  Google Scholar 

  • Ishikawa M, Komi PV (2004) Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise. J Appl Physiol 96(3):848–852

    Article  PubMed  Google Scholar 

  • Ishikawa M, Finni T, Komi PV (2003) Behaviour of vastus lateralis muscle-tendon during high intensity SSC exercises in vivo. Acta Physiol Scand 178(3):205–213

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Komi PV, Grey MJ, Lepola V, Bruggemann GP (2005) Muscle-tendon interaction and elastic energy usage in human walking. J Appl Physiol 99(2):603–608

    Article  PubMed  Google Scholar 

  • Ishikawa M, Pakaslahti J, Komi PV (2007) Medial gastrocnemius muscle behavior during human running and walking. Gait Posture 25(3):380–384

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Saito M (1989) Rebound effect of triceps surae muscle: comparison between gymnasts and swimmer. Research reports of sports medicine and science 31–36. Japan Sports Association, Tokyo (in Japanese)

    Google Scholar 

  • Ito M, Kawakami Y, Ichinose Y, Fukashiro S, Fukunaga T (1998) Nonisometric behavior of fascicles during isometric contractions of a human muscle. J Appl Physiol 85(4):1230–1235

    CAS  PubMed  Google Scholar 

  • Jones GM, Watt DG (1971) Muscular control of landing from unexpected falls in man. J Physiol 219(3):729–737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Józsa L, Kannus P (1997) Functional and mechanical behavior of tendon: human tendons. Human Kinetics, Champaign

    Google Scholar 

  • Kawakami Y, Fukunaga T (2006) New insights into in vivo human skeletal muscle function. Exerc Sport Sci Rev 34(1):16–21

    Article  PubMed  Google Scholar 

  • Kawakami Y, Muraoka T, Ito S, Kanehisa H, Fukunaga T (2002) In vivo muscle fibre behaviour during counter-movement exercise in humans reveals a significant role for tendon elasticity. J Physiol 540(Pt 2):635–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ker RF (1981) Dynamic tensile properties of the plantaris tendon of sheep (Ovis aries). J Exp Biol 93:283–302

    CAS  PubMed  Google Scholar 

  • Knobloch K (2007) Eccentric rehabilitation exercise increases peritendinous type I collagen synthesis in humans with Achilles tendinosis. Scand J Med Sci Sports 17(3):298–299

    Article  CAS  PubMed  Google Scholar 

  • Komi P (2003) Stretch-shortening cycle. In: Komi P (ed) Strength and power in sport, 3rd edn. Blackwell Scientific, Oxford, pp 184–202

    Google Scholar 

  • Komi PV, Bosco C (1978) Utilization of stored elastic energy in leg extensor muscles by men and women. Med Sci Sports 10(4):261–265

    CAS  PubMed  Google Scholar 

  • Kubo K, Kawakami Y, Fukunaga T (1999) Influence of elastic properties of tendon structures on jump performance in humans. J Appl Physiol 87(6):2090–2096

    CAS  PubMed  Google Scholar 

  • Kubo K, Morimoto M, Komuro T, Tsunoda N, Kanehisa H, Fukunaga T (2007a) Influences of tendon stiffness, joint stiffness, and electromyographic activity on jump performances using single joint. Eur J Appl Physiol 99(3):235–243

    Article  PubMed  Google Scholar 

  • Kubo K, Morimoto M, Komuro T, Yata H, Tsunoda N, Kanehisa H, Fukunaga T (2007b) Effects of plyometric and weight training on muscle-tendon complex and jump performance. Med Sci Sports Exerc 39(10):1801–1810

    Article  PubMed  Google Scholar 

  • Kurokawa S, Fukunaga T, Nagano A, Fukashiro S (2003) Interaction between fascicles and tendinous structures during counter movement jumping investigated in vivo. J Appl Physiol 95(6):2306–2314

    Article  PubMed  Google Scholar 

  • Kyröläinen H, Avela J, McBride JM, Koskinen S, Andersen JL, Sipila S, Takala TE, Komi PV (2005) Effects of power training on muscle structure and neuromuscular performance. Scand J Med Sci Sports 15(1):58–64

    Article  PubMed  Google Scholar 

  • Lichtwark GA, Bougoulias K, Wilson AM (2007) Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech 40(1):157–164

    Article  CAS  PubMed  Google Scholar 

  • Magnusson SP, Narici MV, Maganaris CN, Kjaer M (2008) Human tendon behaviour and adaptation, in vivo. J Physiol 586(1):71–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Markovic G (2007) Does plyometric training improve vertical jump height? A meta-analytical review. Br J Sports Med 41(6):349–355, discussion 355

    Article  PubMed Central  PubMed  Google Scholar 

  • Potach D, Chu D (2000) Plyometric training. In: Baechle T, Earle R (eds) Essential of strength training and conditioning. Human Kinetics, Champaign, pp 465–510

    Google Scholar 

  • Radcliffe J, Farentinos R (1999) High-powered pliometrics. Human Kinetics, Tokyo

    Google Scholar 

  • Sousa F, Ishikawa M, Vilas-Boas JP, Komi PV (2007) Intensity- and muscle-specific fascicle behavior during human drop jumps. J Appl Physiol 102(1):382–389

    Article  CAS  PubMed  Google Scholar 

  • Sugisaki N, Okada J, Kanehisa H, Fukunaga T (2004) Effect of elastic energy on the mechanical work and power enhancement in counter movement exercise of ankle joint. Ergonomics 40(2):82–89 (in Japanese)

    Article  Google Scholar 

  • Sugisaki N, Kanehisa H, Kawakami Y, Fukunaga T (2005) Behavior of fascicle and tendinous tissue of medial gastrocnemius muscle during rebound exercise of ankle joint. Int J Sport Health Sci 3:100–109

    Article  Google Scholar 

  • Svantesson U, Grimby G, Thomee R (1994) Potentiation of concentric plantar flexion torque following eccentric and isometric muscle actions. Acta Physiol Scand 152(3):287–293

    Article  CAS  PubMed  Google Scholar 

  • Toumi H, Best TM, Martin A, Poumarat G (2004) Muscle plasticity after weight and combined (weight + jump) training. Med Sci Sports Exerc 22(8):1580–1588

    Google Scholar 

  • Woo SL, Ritter MA, Amiel D, Sanders TM, Gomez MA, Kuei SC, Garfin SR, Akeson WH (1980) The biomechanical and biochemical properties of swine tendons–long term effects of exercise on the digital extensors. Connect Tissue Res 7(3):177–183

    Article  CAS  PubMed  Google Scholar 

  • Young WB, Bilby GE (1993) The effect of voluntary effort to influence speed of contraction on strength, muscular power, and hypertrophy development. J Strength Cond Res 7(3):172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniaki Hirayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hirayama, K. (2015). Jump Performance Enhancement Induced by Countermovement. In: Kanosue, K., Nagami, T., Tsuchiya, J. (eds) Sports Performance. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55315-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55315-1_16

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55314-4

  • Online ISBN: 978-4-431-55315-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics