Skip to main content

Pentacene Becomes Mott–Hubbard Insulator by Potassium Doping

  • Chapter
  • First Online:
Electronic Processes in Organic Electronics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 209))

Abstract

The impact of potassium (K) doping on the electronic structure of single crystalline (SC) pentacene (Pn) thin film grown on Cu(110) was investigated by high-sensitivity angle-resolved ultraviolet photoemission spectroscopy for K x Pn1 (0 ≤ x ≤ 1). At room temperature (293 K), we observed that (i) Pn electronic states shift towards high binding side with progressive growth of a gap state with the K-doping level, (ii) the HOMO band dispersion of the pristine Pn SC multilayer survives even at x = 1, and (iii) no dispersion occurs for the K-induced gap state. At 50 K, on the other hand, we found a small dispersion (width ~0.08 eV) of the K-induced gap state for K1Pn1 SC multilayer. This finding demonstrates that the K-induced gap state originates from the Mott–Hubbard insulator formed by electron transfer from K atom to Pn LUMO. The impact of K doping on the energy level alignment was discussed in terms of coexistence of K1Pn1 Mott–Hubbard insulator and Pn SC film.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)

    Article  ADS  Google Scholar 

  2. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Nature 347, 539 (1990)

    Article  ADS  Google Scholar 

  3. C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mat. 14, 99 (2002)

    Article  Google Scholar 

  4. T. Minakata, M. Ozaki, H. Imai, J. Appl. Phys. 74, 1079 (1993)

    Article  ADS  Google Scholar 

  5. A.B. Kaiser, Rep. Progr. Phys. 64, 1 (2001)

    Article  ADS  Google Scholar 

  6. M.F. Craciun, S. Rogge, M.J.L. den Boer, S. Margadonna, K. Prassides, Y. Iwasa, A.F. Morpurgo, Adv. Mat. 18, 320 (2006)

    Article  Google Scholar 

  7. M.F. Craciun, G. Giovannetti, S. Rogge, G. Brocks, A.F. Morpurgo, J. van den Brink, Phys. Rev. B 79, 125116 (2009)

    Article  ADS  Google Scholar 

  8. P.J. Benning, J.L. Martins, J.H. Weaver, L.P.F. Chibante, R.E. Smalley, Science 252, 1417 (1991)

    Article  ADS  Google Scholar 

  9. M. Fahlman, D. Beljonne, M. Logdlund, R.H. Friend, A.B. Holmes, J.L. Brédas, W.R. Salaneck, Chem. Phys. Lett. 214, 327 (1993)

    Article  ADS  Google Scholar 

  10. H. Ding, Y. Gao, Appl. Phys. Lett. 92, 053309 (2008)

    Article  ADS  Google Scholar 

  11. H. Ding, Y. Gao, Org. Electron. 11, 1786 (2010)

    Article  Google Scholar 

  12. A. Hansson, J. Böhlin, S. Stafström, Phys. Rev. B 73, 184114 (2006)

    Article  ADS  Google Scholar 

  13. M.G. Betti, F. Crispoldi, A. Ruocco, C. Mariani, Phys. Rev. B 76, 125407 (2007)

    Article  ADS  Google Scholar 

  14. F. Evangelista, R. Gotter, N. Mahne, S. Nannarone, A. Ruocco, P. Rudolf, J. Phys. Chem. C 112, 6509 (2008)

    Article  Google Scholar 

  15. G. Iucci, K. Xing, M. Lögdlund, M. Fahlman, W.R. Salaneck, Chem. Phys. Lett. 244, 139 (1995)

    Article  ADS  Google Scholar 

  16. K.Z. Xing, M. Fahlman, M. Lögdlund, M. Berggren, O. Inganäs, M.R. Andersson, M. Boman, S. Stafström, G. Iucci, P. Broms et al., Synth. Met. 80, 59 (1996)

    Article  Google Scholar 

  17. G. Greczynski, M. Fahlman, W.R. Salaneck, N. Johansson, D.A. dos Santos, J.L. Brédas, Thin Solid Films 363, 322 (2000)

    Article  ADS  Google Scholar 

  18. P.J. Benning, D.M. Poirier, T.R. Ohno, Y. Chen, M.B. Jost, F. Stepniak, G.H. Kroll, J.H. Weaver, J. Fure, R.E. Smalley, Phys. Rev. B 45, 6899 (1992)

    Article  ADS  Google Scholar 

  19. F. Sunqi, Z. Xing, W. En, F. Jishi, M. Jinchang, G. Zhennan, Q. Jiuxin, Z. Xihuang, J. Zhaoxia, Y. Bo, Solid State Commun. 80, 639 (1991)

    Article  ADS  Google Scholar 

  20. Y.W. Park, Synth. Met. 56, 3220 (1993)

    Article  Google Scholar 

  21. L. DeGiorgi, J. Low Temp. Phys. 105, 1671 (1996)

    Article  ADS  Google Scholar 

  22. R. Mitsuhashi, Y. Suzuki, Y. Yamanari, H. Mitamura, T. Kambe, N. Ikeda, H. Okamoto, A. Fujiwara, M. Yamaji, N. Kawasaki et al., Nature 464, 76 (2010)

    Article  ADS  Google Scholar 

  23. O.V. Molodtsova, V.M. Zhilin, D.V. Vyalikh, V.Y. Aristov, M. Knupfer, J. Appl. Phys. 98, 093702 (2005)

    Article  ADS  Google Scholar 

  24. H. Yoshida, N. Sato, Phys. Rev. B 77, 235205 (2008)

    Article  ADS  Google Scholar 

  25. S.D. Ha, A. Kahn, Phys. Rev. B 80, 195410 (2009)

    Article  ADS  Google Scholar 

  26. H. Fukagawa, H. Yamane, T. Kataoka, S. Kera, M. Nakamura, K. Kudo, N. Ueno, Phys. Rev. B 73, 245310 (2006)

    Article  ADS  Google Scholar 

  27. S. Kera, H. Yamane, N. Ueno, Progr. Surf. Sci. 84, 135 (2009)

    Article  ADS  Google Scholar 

  28. D.V. Lang, X. Chi, T. Siegrist, A.M. Sergent, A.P. Ramirez, Phys. Rev. Lett. 8, 086802 (2004)

    Article  ADS  Google Scholar 

  29. J. Hwang, A. Wan, A. Kahn, Mat. Sci. Eng. R 64, 1 (2009)

    Article  Google Scholar 

  30. T. Sueyoshi, H. Fukagawa, M. Ono, S. Kera, N. Ueno, Appl. Phys. Lett. 95, 183303 (2009)

    Article  ADS  Google Scholar 

  31. F. Bussolotti, S. Kera, K. Kudo, A. Kahn, N. Ueno, Phys. Rev. Lett. 110, 267602 (2013)

    Article  ADS  Google Scholar 

  32. E. Annese, J. Fujii, I. Vobornik, G. Rossi, J. Phys. Chem. C 116, 2382 (2012)

    Article  Google Scholar 

  33. S. Lukas, S. Söhnchen, G. Witte, C. Wöll, Chem. Phys. Chem. 5, 266 (2004)

    Google Scholar 

  34. F. Bussolotti, S. Kera, N. Ueno, Phys. Rev. B 86, 155120 (2012)

    Article  ADS  Google Scholar 

  35. J.J. Yeh, L. Lindau, Atom. Data Nucl. Data 32, 1 (1985)

    Article  ADS  Google Scholar 

  36. N. Ueno, S. Kiyono, T. Watanabe, Chem. Phys. Lett. 46, 89 (1977)

    Article  ADS  Google Scholar 

  37. J. Cornil, D. Beljonne, J.P. Calbert, J.L. Brédas, Adv. Mat. 13, 1053 (2001)

    Article  Google Scholar 

  38. Y.C. Cheng, R.J. Silbey, D.A. da Silva Filho, J.P. Calbert, J. Cornil, J.L. Brédas, J. Chem. Phys. 118, 3764 (2003)

    Article  ADS  Google Scholar 

  39. C.C. Mattheus, G.A. de Wijs, R.A. de Groot, T.T.M. Palstra, J. Am. Chem. Soc. 125, 6323 (2003)

    Article  Google Scholar 

  40. H. Yamane, E. Kawabe, D. Yoshimura, R. Sumii, Y. Ouchi, N. Ueno, K. Seki, Phys. Status Solidi 245, 793 (2008)

    Article  Google Scholar 

  41. N. Ueno, S. Kera, K. Sakamoto, K. Okudaira, Appl. Phys. A 92, 495 (2008)

    Article  ADS  Google Scholar 

  42. N. Ueno, S. Kera, Progr. Surf. Sci. 83, 490 (2008)

    Article  ADS  Google Scholar 

  43. N. Koch, A. Rajagopal, J. Ghijsen, R.L. Johnson, G. Leising, J.J. Pireaux, J. Phys. Chem. B 104, 1434 (2000)

    Article  Google Scholar 

  44. N. Koch, H. Oji, E. Ito, E. Zojer, H. Ishii, G. Leising, K. Seki, Appl. Surf. Sci. 175, 764 (2001)

    Article  ADS  Google Scholar 

  45. T. Schwieger, H. Peisert, M. Golden, M. Knupfer, J. Fink, Phys. Rev. B 66, 155607 (2002)

    Article  ADS  Google Scholar 

  46. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  47. R. Eguchi, M. Taguchi, M. Matsunami, K. Horiba, K. Yamamoto, Y. Ishida, A. Chainani, Y. Takata, M. Yabashi, D. Miwa et al., Phys. Rev. B 78, 075115 (2008)

    Article  ADS  Google Scholar 

  48. Y. Shichibu, K. Watanabe, Jpn. J. Appl. Phys. 42, 5472 (2003)

    Article  ADS  Google Scholar 

  49. Y. Gao, L. Yan, Chem. Phys. Lett. 380, 451 (2003)

    Article  ADS  Google Scholar 

  50. S.M. Sze, Physics of Semiconductor Devices, Section 1.4.2 (Wiley, New York, 1981)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Global-COE Program of MEXT (G03: Advanced School for Organic Electronics, Chiba University) and Grant-in-Aid for Scientific Research (A; Grant No. 20245039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Bussolotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Bussolotti, F., Kera, S., Ueno, N. (2015). Pentacene Becomes Mott–Hubbard Insulator by Potassium Doping. In: Ishii, H., Kudo, K., Nakayama, T., Ueno, N. (eds) Electronic Processes in Organic Electronics. Springer Series in Materials Science, vol 209. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55206-2_5

Download citation

Publish with us

Policies and ethics