Skip to main content

Signals in Adjoining Frequency Bands

  • Chapter
  • First Online:
Schumann Resonance for Tyros

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 623 Accesses

Abstract

The Earth–ionosphere spherical cavity occupies three dimensions. SR corresponds to radio waves circling the globe, to the ‘longitudinal’ propagation. There is the transverse (vertical) direction of radio wave propagation: between the ground surface and the lower edge of the ionosphere. In the present chapter we briefly describe the natural pulsed signals associated with the transverse resonance of the Earth–ionosphere cavity. This resonance occupies the ELF/VLF frequency band with the basic frequency about 1.6–1.7 kHz. When speaking in terms of subionospheric radio propagation, the transverse resonance frequencies correspond to the cut-off frequencies of the Earth–ionosphere duct. The pulsed transverse resonance signals arriving from great distances are also called ‘tweek–atmospherics’. We use a record of typical tweeks to demonstrate the ‘Kharkov technique’ yielding the simultaneous source location and finding the waveguide effective height. In addition, we discuss properties of ionospheric Alfvén resonance (IAR) that is observed below the basic SR frequency. We present some experimental data and their interpretation in terms of the resonance of the plasma slab bounded by the lower ionosphere and the plasmapause.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Belyaev PP, Polyakov SV, Rapoport VO, Trakhtengertz VY (1987) Discovery of the resonance spectrum structure of atmospheric electromagnetic noise background in the range of short-period geomagnetic pulsations. Dokl Akad Nauk SSSR 297:840–846

    Google Scholar 

  • Belyaev PP, Polyakov SV, Rapoport VO, Trakhtengertz VY (1989) Experimental studies of resonance structure of the spectrum of atmospheric electromagnetic noise in the range of short-period geomagnetic pulsations. Izv. VUZov, RADIOPHYSIKA 32(6):663–672 (in Russian)

    Google Scholar 

  • Belyaev PP, Polyakov SV, Rapoport VO, Trakhtengertz VYu (1990) The ionospheric Alfven resonator. J Atmos Terr Phys 52:781–788

    Article  Google Scholar 

  • Belyaev PP, Bösinger T, Isaev SV, Kangas J. (1999) First evidence at high latitudes for the ionospheric Alfven resonator. J Geophys Res 104:4305–4317

    Google Scholar 

  • Bösinger T, Haldoupis C, Belyaev PP, Yakunin MN, Semenova NV, Demekhov AG, Angelopoulos V (2002) Spectral properties of the ionospheric Alfven resonator observed at a low-latitude station (L = 1.3). J Geophys Res 107:1281. doi:10.1029/2001JA005076

    Article  Google Scholar 

  • Brundell JB, Rodger CJ, Dowden RL (2002) Validation of single-station lightning location technique. Radio Sci 37(4):12-1–12-9. doi:10.1029/2001RS002477

    Google Scholar 

  • Budden KG (1961) Radio waves in the ionosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Cummer SA, Inan US (2000) Ionospheric E-region remote sensing with ELF radio atmospherics. Radio Sci 35:1437–1444

    Google Scholar 

  • Demekhov AG, Trakhtengertz VY, Bösinger T (2000) Pc 1 waves and ionospheric Alfven resonator: generation or filtration? Geophys Res Lett 27(23):3805–3808

    Google Scholar 

  • Demekhov AG (2011) Coupling at the atmosphere–ionosphere–magnetosphere interface and resonant phenomena in the ULF range. Space Sci Rev. doi:10.1007/s11214-011-9832-6

    Google Scholar 

  • Fedorov E, Schekotov AYu, Molchanov OA, Hayakawa M, Surkov VV, Gladichev VA (2006) An energy source for the mid-latitude IAR: world thunderstorm centers, nearby discharges or neutral wind fluctuations? Phys Chem Earth 31:462–468

    Article  Google Scholar 

  • Greifinger C, Greifinger P (1978) Approximate method for determine ELF eigen-values in the Earth-ionosphere waveguide. Radio Sci 13:831–837

    Article  Google Scholar 

  • Harth W (1982) Theory of low frequency wave propagation. In: Volland H (ed) Handbook of atmospherics, vol II. CRC Press, Boca Raton, pp 133–302

    Google Scholar 

  • Hayakawa M, Shimakura S (1992) High accuracy method of locating distant lightning by means of tweek-atmospherics. 11th International Wroclav Symposium on Electromagnetic Compatibility, Wroclav, Poland, pp 566–569

    Google Scholar 

  • Hayakawa M, Ohta K, Baba K (1994), Wave characteristics of tweek atmospherics deduced from the direction finding measurement and theoretical interpretation. J Geophys Res 99:10733–10743

    Google Scholar 

  • Hayakawa M (1995) Whistlers. In: Volland H (ed) Handbook of Atmospheric Electrodynamics, vol II, Chap. 7. CRC Press, Boca Raton, pp 155–193

    Google Scholar 

  • Hayakawa M, Molchanov OA, Schekotov AY, Fedorov E (2004) Observation of ionospheric Alfven resonance at a middle latitude station. Adv Polar Upp Atmos Res 18:65–76

    Google Scholar 

  • Hobara,Y, Hayakawa M (2012) The effects of lightning on the ionosphere/magnetosphere. In: Cooray V (ed) Lightning electromagnetics, Chap. 17. Institute Engineering and Technology, London, pp 647–685

    Google Scholar 

  • Iwai A, Nakai T (1953), Unidirectional direction finder of atmospherics. In: Proceeding Research Institute Atmospherics, Nagoya University, vol 1, pp 50–53

    Google Scholar 

  • Iwai A, Ito K, Tanaka T, Ebuchi T (1953) Direction finder of atmospherics. In: Proceeding Research Institute Atmospherics, Nagoya University, vol 1, pp 54–62

    Google Scholar 

  • Iwai A, Ohtsu J, Nishino M, Kashiwagi M. (1969) A new direction finding network for locating the sources of atmospherics. In: Proceeding Research Institute Atmospherics, Nagoya University, vol 16, pp 17–20

    Google Scholar 

  • Iwata A, Ishikawa H, Takagi M (1970) Slow tail atmospherics and their origin. In: Proceeding Research Institute Atmospherics, Nagoya University, vol 17, pp 13–21

    Google Scholar 

  • J Atmos Solar-Terr Phys (2000), 62(2), Special issue on the IAR.

    Google Scholar 

  • Kimpara A (1953) The waveform of atmospherics in the daytime. In: Proceeding Research Institute Atmospherics, Nagoya University, vol 1, pp 1–11

    Google Scholar 

  • Kimpara A (1955) Atmospherics in the far east, Proceeding Research Institute Atmospherics, Nagoya University, vol 3, pp 1–28

    Google Scholar 

  • Kimpara A (1956) The waveform of atmospherics in the daytime and at night. In: Proceeding Research Institute Atmospherics, Nagoya University, vol 4, pp 1–19

    Google Scholar 

  • Lazebny BV, Nickolaenko AP, Rafalsky VA, Shvets AV (1988) Detection of transverse resonances of the Earth-ionosphere cavity using average spectra of VLF atmospherics. Geomag Aeron 28:329–330 (in Russian)

    Google Scholar 

  • Molchanov OA, Schekotov AYu, Fedorov EN, Hayakawa M (2004) Ionospheric Alfven resonance at middle latitudes: Results of observations at Kamchatka. Phys Chem Earth Parts A/B/C 29:649–655

    Article  Google Scholar 

  • Nickolaenko AP, Rafalsky VA, Shvets AV, Hayakawa M (1994) A time domain direction finding technique for ELF-VLF atmospherics. J Atmos Electr 12:97–107

    Google Scholar 

  • Nickolaenko AP, Rabinowicz LM, Shvets AV, Schekotov AYu (2004) Polarization characteristics of low frequency resonances. Izv. VUZOV, Radiofizika 47(4):267–291 (in Russian)

    Google Scholar 

  • Ohta K, Shimizu A, Hayakawa M (1994) The effect of subionospheric propagation on whistlers as deduced from direction finding measurements. Geophys Res Lett 21:89–92

    Article  Google Scholar 

  • Pilipenko VA (2011) Impulsive coupling between the atmosphere and ionosphere/magnetosphere. Space Sci Rev. doi:10.1007/s11214-011-9859-8

    Google Scholar 

  • Polyakov SV (1976) On the properties of the ionospheric Alfvén resonator, KAPG Symposium on Solar-Terrestrial Physics, 3rd edn. Nauka, Moscow, pp 72–73

    Google Scholar 

  • Polyakov SV, Rapoport VO (1981) Ionospheric Alfvén resonator. Geomag Aeron 21:816–822 (In Russian)

    Google Scholar 

  • Porrat D, Bannister PR, Fraser-Smith AC (2001) Modal phenomena in the natural electromagnetic spectrum below 5 kHz. Radio Sci 36:499–506

    Article  Google Scholar 

  • Rafalsky VA (1991) Resonance phenomena in cross-section of the Earth-ionosphere duct and their influence on radio wave excitation and propagation, Ph.D. Thesis, Kharkov (in Russian)

    Google Scholar 

  • Rafalsky VA, Nickolaenko AP, Shvets AV, Hayakawa M. (1995a) Location of lightning discharges from a single station. J Geophys Res 100(D10):20829–20838

    Google Scholar 

  • Rafalsky VA, Shvets AV, Hayakawa M (1995b) One-site distance-finding technique for locating lightning discharges. J Atmos Terr Phys 57(11):1255–1261

    Google Scholar 

  • Schekotov AYu, Pilipenko V, Shiokawa K, Fedorov E (2011) ULF impulsive magnetic response at mid-latitudes to lightning activity. Earth Planets Space 63:1–10

    Article  Google Scholar 

  • Shalimov S, Bösinger T (2008) On distant excitation of the ionospheric Alfven resonator by positive cloud-to-ground lightning discharges. J Geophys Res 113:A02303

    Article  Google Scholar 

  • Shimakura S, Moriizumi M, Hayakawa M (1991) Propagation mechanism of very unusual low-latitude whistlers with additional traces of the earth-ionosphere waveguide propagation effect. Planet Space Sci 39:611–616

    Article  Google Scholar 

  • Shvets AV (1994) Experimental study of propagation of ELF-VLF radio waves and dynamics of the global thunderstorm activity, Ph.D. Thesis, Kharkov (in Russian)

    Google Scholar 

  • Shvets AV, Hayakawa M (1998) Polarization effects for tweek propagation. J Atmos Solar-Terr Phys 60:461–469

    Article  Google Scholar 

  • Shvets AV, Hobara Y, Hayakawa M (2010) Variations of the global lightning distribution revealed from three station Schumann resonance measurements. J Geophys Res 115:A12316. doi:10.1029/2010JA015851

    Article  Google Scholar 

  • Shvets AV, Gorishnya YuV (2010) Location of lightning strokes and estimation of the ionosphere height by using the dispersion properties of tweek-atmospherics. Radiophys Electron 16(4):53–59 (in Russian)

    Google Scholar 

  • Shvets AV, Gorishnya YV (2011) A technique for lightning location and estimation of the lower ionosphere parameters using tweek-atmospherics. Telecommun Radio Eng 70(11):1013–1026

    Google Scholar 

  • Semenova NV, Yahnin AG (2008) Diurnal behavior of the ionospheric Alfven resonator signatures as observed at high latitude observatory Barentsburg (L = 15). Ann Geophys 26:2245–2251

    Google Scholar 

  • Semenova NV, Yahnin AG, Vasil’ev AN, Amm O (2008) Specific features of resonance structures in spectra of ULF electromagnetic noise at high latitudes (Barentsburg Observatory). Geomagn Aeron 48:36–44

    Article  Google Scholar 

  • Simoes F, Berthelier J–J, Godefroy M, Yahi S (2009) Observation and modeling of the Earth-ionosphere cavity electromagnetic transverse resonance and variation of the D-region electron density near sunset. Geophys Res Lett 36:L14816. doi:10.1029/2009GL039286

    Article  Google Scholar 

  • Sukhorukov AI, Shimakura S, Hayakawa M (1992) On the additional dispersion of a whistler in the earth-ionosphere waveguide. Planet Space Sci 40:1185–1191

    Google Scholar 

  • Sukhorukov AI, Stubbe P (1997) Excitation of the ionospheric Alfven resonator by strong lightning discharges. Geophys Res Lett 24:829–832

    Article  Google Scholar 

  • Surkov VV, Pokhotelov OA, Parrot M, Fedorov EN, Hayakawa M (2004) Excitation of the ionospheric resonance cavity by neutral winds at middle latitudes. Ann Geophysicae 22:2877–2889

    Google Scholar 

  • Surkov VV, Hayakawa M, Schekotov AY, Fedorov EN, Molchanov OA (2006) Ionospheric Alfvén resonator excitation due to nearby thunderstorms. J Geophys Res 111:A01303. doi:10.1029/2005JA011320

    Article  Google Scholar 

  • Toledo-Redondo S, Parrot M, Salinas A (2012) Variation of the first cut-off frequency of the Earth-ionosphere waveguide observed by DEMETER. J Geophys Res 117:A04321. doi:10.1029/2011JA017400

    Article  Google Scholar 

  • Trakhtengerts VY, Feldstein AY (1991) Turbulent Alfvén boundary layer in the polar ionosphere, 1, Excitation conditions and energetics. J. Geophys Res 96:19363–19374

    Google Scholar 

  • Trakhtengerts VY, Demekhov AC, Belyaev PP, Polyakov SV, Ermakova EN, Isaev SV (2000) A mechanism of anti-correlation in the occurrence of ULF electromagnetic noise resonance structure and Pc1 magnetic pulsations through the solar activity cycle. J Atmos Solar-Terr Phys 62:253–256

    Article  Google Scholar 

  • Wait JR (1962) Electromagnetic Waves in Stratified Media. Pergamon Press, Oxford

    Google Scholar 

  • Yano S, Ogawa T, Hagino H (1991) Dispersion characteristics and waveform analysis of tweek atmospherics. In: Kikuchi H (ed) Environmental and space electromagnetics. Springer, Tokyo, pp 227–236

    Chapter  Google Scholar 

  • Yedemsky DY, Ryabov BS, Schekotov AY, Yarotsky VS (1992) Experimental investigation of the tweek field structure. Adv Space Res 12(6):251–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Nickolaenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nickolaenko, A., Hayakawa, M. (2014). Signals in Adjoining Frequency Bands. In: Schumann Resonance for Tyros. Springer Geophysics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54358-9_12

Download citation

Publish with us

Policies and ethics