Skip to main content

A Novel Microdialysis Probe Designed for Clinical Use: Potential Analytical and Therapeutic Applications

  • Conference paper
Clinical Aspects of Microdialysis

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 67))

  • 52 Accesses

Summary

Significant obstacles to the use of microdialysis in the clinic for diagnostic or therapeutic purposes include the production of a dedicated entry port through the skull and the formation of a tract by the insertion of a probe into the parenchyma. We have developed a microdialysis probe that is minimally invasive and can be combined with an intracranial pressure probe, recording electrode, or other intracranial probe, that is minimally invasive. Yet the surface area of this probe is very high, permitting high recovery efficiencies even at relatively high flow rates.

This probe design makes possible minimally invasive measurement of the peroxidation product, uric acid, and excitatory amino acids, two analytes that increase in experimental traumatic brain injury in animals. Moreover, its large surface area makes therapeutic applications of microdialysis probes in the brain potentially feasible. A pilot evaluation of the ability of microdialysis to have therapeutic benefit in limiting experimental excitotoxin lesions induced in rat striatum by N-methyl-D-aspartate (NMDA) is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boast CA, Gerhardt SC, Pastor G, Lehmann J, Etienne PE, Lehmann JM (1988) The N-methyl-D-aspartate antagonists CGS 19755 and CPP reduce ischemic brain damage in gerbils. Brain Res 442: 345–348

    Article  PubMed  CAS  Google Scholar 

  2. Cheney DL, Lehmann J, Cosi C, Wood PL (1989) Determination of acetylcholine dynamics. In: Boulton AB, Baker GB, Juorio AV (eds) Neuromethods, Vol 12. Drugs as tools in neurotransmitter research. Humana, Clifton, NJ, pp 443–495

    Google Scholar 

  3. Fonnum F (1975) A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem 24: 407–409

    Article  PubMed  CAS  Google Scholar 

  4. Hillered L, Persson L, Ponten U, Ungerstedt U (1990) Neurometabolic monitoring of the ischaemic human brain using microdialysis. Acta Neurochir (Wien) 102: 91–97

    Article  CAS  Google Scholar 

  5. Hillered L, Persson L, Ungerstedt U (1990) Chemical changes in the extracellular fluid of human cerebral cortex during ischemica measured by intracerebral microdialysis. J Neurochem 52 [Suppl]: S55B

    Google Scholar 

  6. Landolt H, Langemann H, Gratzl O (1993) On-line monitoring of cerebral pH by microdialysis. Neurosurgery 32: 1000–1004

    Article  PubMed  CAS  Google Scholar 

  7. Landolt H, Lutz TW, Langemann H, Stauble D, Mendelowitsch A, Gratzl O, Honegger CG (1992) Extracellular antioxidants and amino acids in the cortex of the rat: monitoring by midrodialysis of early ischemic changes. J Cerebral Blood Flow Metab 12: 96–102

    Article  CAS  Google Scholar 

  8. Langer SZ, Lehmann J (1988) Presynaptic receptors on catecholamine neurones. In: Trendelenburg U, Weiner N (eds) Handbook of experimental pharmacology, Vol 90/I. Springer, Berlin Heidelberg New York Tokyo, pp 419–507

    Google Scholar 

  9. Lehmann J, Ferkany JW, Schaeffer P, Coyle JT (1985) Dissociation between the excitatory and “excitotoxic” effects of quinolinic acid analogs on the striatal cholinergic interneuron. J Pharmacol Exp Ther 232: 873–882

    PubMed  CAS  Google Scholar 

  10. Lehmann J, Fibiger HC (1979) Acetylcholinesterase and the cholinergic neuron. Life Sci 5: 1161–1174

    Google Scholar 

  11. Lehmann J, Schneider J, McPherson S, Murphy DE, Bernard P, Tsai C, Bennett DA, Pastor G, Steel DJ, Boehm C, Cheney DL, Lehmann JM, Williams M, Wood PL (1987) CPP, a selective NMDA-type receptor antagonist: characterization in vitro and in vivo. J Pharmacol Exp Ther 240: 737–746

    PubMed  CAS  Google Scholar 

  12. Lehmann J, Valentino R, Robine V (1992) Cortical norepinephrine release elicited in situ by N-methyl-D-aspartate (NMDA) receptor stimulation: a microdialysis study. Brain Res 599: 171–174

    Article  PubMed  CAS  Google Scholar 

  13. Ludvig N, Mishra PK, Yan Q-S, Lasley SM, Burger RL Jobe PC (1992) The paradoxical effect of NMDA receptor stimulation on electrical activity of the sensorimotor cortex in freely behaving rats: analysis by combined EEG-intracerebral microdialysis. Synapse 12: 87–96

    Article  PubMed  CAS  Google Scholar 

  14. Ludvig N, Mishra PK, Yan QS, Lasley SM, Burger RL Jobe PC (1992) The combined EEG-intracerebral microdialysis technique: a new tool for neuropharmacological studies on freely behaving animals. J Neurosci Methods 43: 129–137

    Article  PubMed  CAS  Google Scholar 

  15. Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U (1989) Microdialysis in the human brain: extracellular measurements in the thalamus of Parkinsonian patients. Life Sci 46: 301–308

    Article  Google Scholar 

  16. Obrenovitch TP, Zilkha E, Urenjak J (1995) Intracerebral microdialysis: electrophysiological evidence of a critical pitfall. J Neurochem 64: 1884–1887

    Article  PubMed  CAS  Google Scholar 

  17. Persson L, Hillered L (1992) Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg 76: 72–80

    Article  PubMed  CAS  Google Scholar 

  18. Ungerstedt U (1984) Measurement of neurotransmitter release by intracranial dialysis. Measure of neurotransmit release in vivo pp 81–105

    Google Scholar 

  19. Wood PL, Cheney DL (1985) Gas chromatography-mass fragmentography of amino acids. In: Marsden CA (ed) Measurements of neurotransmitter release in vivo. Wiley, NY, pp 51–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag/Wien

About this paper

Cite this paper

Lehmann, J.C., Jones, T.R., Mishra, P.K., Hamelin, S., Nair, S.N. (1996). A Novel Microdialysis Probe Designed for Clinical Use: Potential Analytical and Therapeutic Applications. In: Mendelowitsch, A., Langemann, H., Alessandri, B., Landolt, H., Gratzl, O. (eds) Clinical Aspects of Microdialysis. Acta Neurochirurgica Supplement, vol 67. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6894-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6894-3_15

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7426-5

  • Online ISBN: 978-3-7091-6894-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics