Skip to main content

Life beyond eradication: veterinary viruses in basic science

  • Chapter

Part of the book series: Archives of Virology. Supplementa ((ARCHIVES SUPPL,volume 15))

Summary

To some, the focus of research in virology entails the search for solutions of practical problems. By definition then, attention is limited to those viruses that cause disease or to exploitation of some aspect of virology to a practical end (e.g., antiviral drugs or vaccines). Once a disease is cured, or the agent eradicated, it is time to move on to something else. To others, virology offers the opportunity to study fundamental problems in biology. Work on these problems may offer no obvious practical justification; it is an affliction of the terminally curious, perhaps with the outside hope that something “useful” will come of it. To do this so-called “basic science”, one must find the most tractable system to solve the problem, not the system that has “relevance” to disease. I have found that veterinary viruses offer a variety of opportunities to study relevant problems at the fundamental level. To illustrate this point, I describe some recent experiments in my laboratory using pseudorabies virus (PRV), a swine herpesvirus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babic N, Mettenleiter TC, Flamand A, Ugolini G (1993) Role of essential glycoproteins gII and gp50 in transneuronal transfer of pseudorabies virus from the hypoglossal nerves of mice. J Virol 67: 4421–4426

    PubMed  CAS  Google Scholar 

  2. Babic N, Klupp B, Brack A, Mettenleiter TC, Ugolini G, Flamand A (1996) Deletion of glycoprotein gE reduces the propagation of pseudorabies virus in the nervous system of mice after intranasal inoculation. Virology 219: 279–284

    Article  PubMed  CAS  Google Scholar 

  3. Banfield BW, Yap GS, Knapp AC, Enquist LW (1998) A chicken embryo eye model for the analysis of alphaherpesvirus neuronal spread and virulence. J Virol 72: 4580–4588

    PubMed  CAS  Google Scholar 

  4. Bartha A (1961) Experimental reduction of virulence of Aujeszky’s disease virus. Magy Allatorv Lapja 16: 42–45

    Google Scholar 

  5. Brideau AD, Banfield BW, Enquist LW (1998) The Us9 gene product of pseudorabies virus, an alpha herpesvirus, is a phosphorylated, tail anchored type II membrane protein. J Virol 72: 4 560–4 570

    CAS  Google Scholar 

  6. Card JP, Levitt P, Enquist LW (1998) Different patterns of neuronal infection after intracerebral injection of two strains of pseudorabies virus. J Virol 72: 4434–4441

    PubMed  CAS  Google Scholar 

  7. Card JP, Rinaman L, Schwaber JS, Miselis RR, Whealy ME, Robbins AK, Enquist LW (1990) Neurotropic properties of pseudorabies virus: uptake and transneuronal passage in the rat central nervous system. J Neurosci 10: 1 974–1 994

    CAS  Google Scholar 

  8. Card JP, Whealy ME, Robbins AK, Moore RY, Enquist LW (1991) Two α-herpesvirus strains are transported differentially in the rodent visual system. Neuron 6: 957–969

    Article  PubMed  CAS  Google Scholar 

  9. Cohen J (1998) Infection of cells with varicella-zoster virus down-regulates surface expression of class I major histocompatibility complex antigens. Infect Dis 155: 1 390–1393

    Google Scholar 

  10. Cook ML, Stevens JG (1973) Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infect Immun 7: 272–288

    PubMed  CAS  Google Scholar 

  11. Davison AJ, Scott JE (1986) The complete DNA sequence of varicella-zoster virus. J Gen Virol 67: 1759–1816

    Article  PubMed  CAS  Google Scholar 

  12. Dingwell KS, Brunetti CR, Hendricks RL, Tang Q, Tang M, Rainbow AJ, Johnson DC (1994) Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J Virol 68: 834–845

    PubMed  CAS  Google Scholar 

  13. Dingwell KS, Doering LC, Johnson DC (1995) Glycoproteins E and I facilitate neuron-to-neuron spread of herpes simplex virus. J Virol 69: 7 087–7 098

    CAS  Google Scholar 

  14. Dolivo M (1980) A neurobiological approach to neurotropic viruses. Trends Neurosci 3: 149–152

    Article  Google Scholar 

  15. Dolivo M, Beretta E, Bonifas V, Foroglou C (1978) Ultrastructure and function in sympathetic ganglia isolated from rats infected with pseudorabies virus. Brain Res 140: 111–123

    Article  PubMed  CAS  Google Scholar 

  16. Dolivo M, Honegger P, George C, Kiraly M, Bommeli W (1979) Enzymatic activity, ultrastructure and function in ganglia infected with a neurotropic virus. In: Cuenod M, Kreutzberg GW, Bloom FE (eds) Development and chemical specificity of neurons, Vol 51. Elsevier/North-Holland Biomedicai Press, Amsterdam, pp 51–57

    Chapter  Google Scholar 

  17. Enquist LW, Card JP (1996) Pseudorabies virus: a tool for tracing neuronal connections. In: Lowenstein R, Enquist LW (eds) Protocols for gene transfer in neuroscience: towards gene therapy of neurological disorders. J Wiley, Chichester, pp 333–348

    Google Scholar 

  18. Enquist LW, Husak PJ, Banfield BW, Smith GA (1998) Infection and spread of alpha-herpesviruses in the nervous system. Adv Virus Res 58: 237–347

    Article  Google Scholar 

  19. Favoreel HW, Nauwynck JJ, van Oostveldt P, Mettenleiter TC, Pensaert MB (1997) Antibody-induced and cytoskeleton-mediated redistribution and shedding of viral glycoproteins, expressed on pseudorabies virus-infected cells. J Virol 71: 8254–8 261

    PubMed  CAS  Google Scholar 

  20. Frame MC, McGeoch DJ, Rixon FJ, Orr AC, Marsden HS (1986) The 10 K virion phophoprotein encoded by gene Us9 from herpes simplex virus type I. Virology 150: 321–332

    Article  PubMed  CAS  Google Scholar 

  21. Goodpasture EW, Teague O (1923) Transmission of the virus of herpes fibrils along nerves in experimentally infected rabbits. J Med Res 44: 139–184

    PubMed  CAS  Google Scholar 

  22. Goodpasture EW (1925) The axis-cylinders of peripheral nerves as portals of entry to the central nervous system for the virus of herpes simplex in experimentally infected rabbits. Am J Pathol 1: 11–33

    PubMed  CAS  Google Scholar 

  23. Hengel H, Koszinowski UH (1997) Interference with antigen processing by viruses. Curr Opin Immunol 9: 470–476

    Article  PubMed  CAS  Google Scholar 

  24. Jacobs L (1994) Glycoprotein E of pseudorabies virus and homologous proteins in other alphaherpesvirinae. Arch Virol 137: 209–228

    Article  PubMed  CAS  Google Scholar 

  25. Jansen ASP, Nguyen XV, Karpitskiy V, Mettenleiter TC, Loewy AD (1995) Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270: 644–646

    Article  PubMed  CAS  Google Scholar 

  26. Jons A, Mettenleiter TC (1997) Green fluorescent protein expressed by recombinant pseudorabies virus as an in vivo marker for viral replication. J Virol Methods 66: 283–292

    Article  PubMed  CAS  Google Scholar 

  27. Kimman TG, Bionchi ATJ, de Bruin TGM, Mulder WAM, Priem J, Voermans JM (1995) Interaction of pseudorabies virus with immortalized porcine B cells: influence on surface class I and II major histocompatibility and immunoglobulin M expression. Vet Immunol Immunopath 45: 253–263

    Article  CAS  Google Scholar 

  28. Kovacs SzF, Mettenleiter TC (1991) Firefly luciferase as a marker for herpesvirus (pseudorabies virus) replication in vitro and in vivo. J Gen Virol 72: 2 999–3 008

    Google Scholar 

  29. Kristensson K (1970) Morphological studies of the neural spread of herpes simplex virus to the central nervous system. Acta Neuropathol 16: 54–63

    Article  PubMed  CAS  Google Scholar 

  30. Kristensson K, Ghetti B, Wisniewski HM (1974) Study on the propagation of herpes simplex virus (type 2) into the brain after intraocular injection. Brain Res 69: 189–201

    Article  PubMed  CAS  Google Scholar 

  31. Kristensson K, Lycke E, Sjostrand J (1971 ) Spread of herpes simplex virus in peripheral nerves. Acta Neuropathol 17: 44–53

    Article  PubMed  CAS  Google Scholar 

  32. (Deleted in proof)

    Google Scholar 

  33. Kristensson K, Nennesmo I, Persson L, Lycke E (1982) Neuron to neuron transmission of herpes simplex virus: transport of virus from skin to brainstem nuclei. J Neurol Sci 54: 149–156

    Article  PubMed  CAS  Google Scholar 

  34. Kristensson K, Vahlne A, Persson LA, Lycke E (1978) Neural spread of herpes simplex virus types 1 and 2 in mice after corneal or subcutaneous (footpad) inoculation. J Neurol Sci 35: 331–340

    Article  PubMed  CAS  Google Scholar 

  35. Kritas SK, Pensaert MB, Mettenleiter TC (1994) Role of envelope glycoproteins gI, gp63 and gIII in the invasion and spread of Aujeszky’s disease virus in the olfactory nervous pathway of the pig. J Gen Virol 75: 2 319–2 327

    Article  CAS  Google Scholar 

  36. Kritas SK, Nauwynck HJ, Pensaert MB (1995) Dissemination of wild type and gC-, gE-and gl-deleted mutants of Aujeszky’s disease virus in the maxillary nerve and trigeminal ganglion of pigs after intranasal inoculation. J Gen Virol 76: 2 063–2 066

    Article  CAS  Google Scholar 

  37. Kuypers HGJM, Ugolini G (1990) Viruses as transneuronal tracers. Trends Neurosci 13: 71–75

    Article  PubMed  CAS  Google Scholar 

  38. Loewy AD, Bridgman PC, Mettenleiter TC (1991) Beta-galactosidase expressing recombinant pseudorabies virus for light and electron microscopic study of transneu-ronally labeled CNS neurons. Brain Res 555: 346–352

    Article  PubMed  CAS  Google Scholar 

  39. Loewy AD (1995) Pseudorabies virus: a tranneuronal tracer for neuroanatomical studies. In: Kaplitt MG, Loewy AD (eds) Viral vectors. Gene therapy and neuroscience applications. Academic Press, San Diego, pp 349–366

    Google Scholar 

  40. Lowenstein PR, Enquist LW (1995) Protocols for gene transfer in neuroscience; towards gene therapy of neurological disorders. J Wiley, New York

    Google Scholar 

  41. Mellencamp MW, O’Brien PCM, Stevenson JR (1991) Pseudorabies virus-induced suppression of major histocompatibility complex class I antigen expression. J Virol 65: 3 365–3 368

    CAS  Google Scholar 

  42. Messerle M, Crnkovic I, Hammerschmidt W, Ziegler H, Koszinowski UH (1997) Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA 94: 14759–14763

    Article  PubMed  CAS  Google Scholar 

  43. Mettenleiter TC (1994) Pseudorabies (Aujeszky’s Disease) virus: state of the art. Acta Vet Hung 42: 153–177

    PubMed  CAS  Google Scholar 

  44. Mettenleiter TC, Rauh I (1990) A glycoprotein gX-β-galactosidase fusion gene as in-sertional marker for rapid identification of pseudorabies virus mutants. J Virol Methods 30: 55–66

    Article  PubMed  CAS  Google Scholar 

  45. Montgomery RI, Warner MS, Lum BJ, Spear PG (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87: 427–436

    Article  PubMed  CAS  Google Scholar 

  46. Mulder W, Pol J, Kimman T, Kok G, Priem J, Peeters B (1996). Glycoprotein D-negative pseudorabies virus can spread transneuronally via direct neuron-to-neuron transmission in its natural host, the pig, but not after additional inactivation of gE or gI. J Virol 70: 2191–2200

    PubMed  CAS  Google Scholar 

  47. Nataraj C, Eidmann S, Hariharan MJ, Sur JH, Perry GA, Srikumaran S (1997) Bovine herpesvirus 1 downregulates the expression of bovine MHC class I molecules. Viral Immunol 10: 21–34

    Article  PubMed  CAS  Google Scholar 

  48. Olson JK, Grose C (1997) Endocytosis and recycling of varicella-zoster virus Fc receptor glycoprotein gE: internalisation mediated by a YXXL motif in the cytoplasmic tail. J Virol 71: 4042–4054

    PubMed  CAS  Google Scholar 

  49. Peeters B, Pol J, Gielkens A, Moormann R (1993) Envelope glycoprotein gp50, of pseudorabies virus is essential for virus entry but is not required for viral spread in mice. J Virol 67: 170–177

    PubMed  CAS  Google Scholar 

  50. Rauh I, Mettenleiter TC (1991) Pseudorabies virus glycoproteins gII and gp50 are essential for virus penetration. J Virol 65: 5 348–56

    CAS  Google Scholar 

  51. Roizman B, Sears E (1996) Herpes simplex viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fundamental virology. Lippincott-Raven, Philadelphia New York, pp 1043–1107

    Google Scholar 

  52. Sabin AB (1938) Progression of different nasally instilled viruses along different nervous pathways in the same host. Proc Soc Exp Biol Med 38: 270–275

    Google Scholar 

  53. Schmidt J, Klupp BG, Karger A, Mettenleiter TC (1997) Adaptability in her-pesviruses: glycoprotein D-independent infectivity of pseudorabies virus. J Virol 71: 17–24

    PubMed  CAS  Google Scholar 

  54. Standish A, Enquist LW, Miselis RR, Schwaber JS (1995) Dendritic morphology of cardiac related medullary neurons defined by circuit-specific infection by a recombinant pseudorabies virus expressing beta-galactosidase. J Neurovirol 1: 359–368

    Article  PubMed  CAS  Google Scholar 

  55. Tirabassi RS, Townley RA, Eldridge MG, Enquist LW (1997) Characterization of Pseudorabies virus mutants expressing carboxy-terminal truncations of gE: evidence for envelope incorporation, virulence, and neurotropism domains. J Virol 71: 6455–6464

    PubMed  CAS  Google Scholar 

  56. Tirabassi RS, Enquist LW (1998) The role of envelope protein gE endocytosis in the pseudorabies virus life cycle. J Virol 72: 4571–4579

    PubMed  CAS  Google Scholar 

  57. Ugolini G (1995) Transneuronal tracing with alpha-herpesviruses: a review of the methodology. In: Kaplitt MG, Loewy AD (eds) Viral vectors. Gene therapy and neuroscience applications. Academic Press, San Diego, pp 293–317

    Google Scholar 

  58. Whitley RJ, Schlitt M (1991) Encephalitis caused by herpesviruses including B virus. In: Scheid WM, Whitley RJ, Durack DT (eds) Infections of the central nervous system. Raven Press, New York, pp 41–86

    Google Scholar 

  59. Wittmann G (1989) Herpesvirus diseases of cattle, horses and pigs. Kluwer, Boston Dordrecht London

    Book  Google Scholar 

  60. Whealy ME, Card JP, Robbins AK, Dubin JR, Rziha H-J, Enquist LW (1993) Specific pseudorabies virus infection of the rat visual system requires both gI and gp63 glycoproteins. J Virol 67: 3 786–3 797

    CAS  Google Scholar 

  61. Zemanick MC, Strick PL, Dix RD (1991 ) Direction of transneuronal transport of herpes simplex virus 1 in the primate motor system is strain-dependent. Proc Natl Acad Sci USA 88: 8048–8051

    Article  PubMed  CAS  Google Scholar 

  62. Zhu Z, Hao Y, Gershon MD, Ambron RT, Gershon AA (1996) Targeting of glycoprotein I(gE) of varicella-zoster virus to the trans-Golgi network by an AYRV sequence and an acidic amino acid-rich patch in the cytosolic domain of the molecule. J Virol 70: 6563–6575

    PubMed  CAS  Google Scholar 

  63. Tirabassi RS, Enquist LW (1999) Mutation of the YXXL endocytosis motif in the cyto-plasmic tail of pseudorabies virus gE. J Virol 73: 2717–2728

    PubMed  CAS  Google Scholar 

  64. Yang M, Card JP, Tirabassi RS, Miselis RR, Enquist LW (1999) Retrograde, transneu-ronal spread of pseudorabies virus in defined neuronal circuitry of the rat brain is facilitated by gE mutations that reduce virulence. J Virol 73: 4 350–4 359

    CAS  Google Scholar 

  65. Brideau A, del Rio T, Wolffe EJ, Enquist LW (1999) Intracellular trafficking and localization of the pseudorabies virus Us9 Type II envelope protein to host and viral membranes. J Virol 73: 4372–4384

    PubMed  CAS  Google Scholar 

  66. Sparks-Thissen R, Enquist LW (1999) Differential regulation Dk and Kk MHC class I proteins on the cell surface after infection of murine cells by pseudorabies virus. J Virol 73: 5 748–5 756

    CAS  Google Scholar 

  67. Smith GA, Enquist LW (1999) Construction and transposon mutagenesis in E. coli of a full-length infectious clone of pseudorabies virus, an alphaherpesvirus. J Virol (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this chapter

Cite this chapter

Enquist, L.W. (1999). Life beyond eradication: veterinary viruses in basic science. In: Calisher, C.H., Horzinek, M.C. (eds) 100 Years of Virology. Archives of Virology. Supplementa, vol 15. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6425-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6425-9_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83360-5

  • Online ISBN: 978-3-7091-6425-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics