Skip to main content

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 73))

Summary

Ischemia is accompanied by mitochondrial dysfunction, as assessed by measurements of mitochondrial respiratory activities in vitro. Following brief periods of ischemia, mitochondrial function is usually normalized during reperfusion. However, particularly after ischemia of longer duration, reperfusion may be accompanied by secondary mitochondrial failure. After short periods of ischemia this is observed in selectively vulnerable areas and, after intermediate to long periods of ischemia, in other areas as well. However, it has remained unsettled if the mitochondrial dysfunction is the result or the cause of cell death.

Although it has been commonly assumed that such failure is secondary to cell injury by other mechanisms, recent results suggest that mitochondrial dysfunction may be the cause of cell death. Indirect evidence for this postulate is provided by experiments showing that cyclosporin A (CsA), when allowed to cross the blood-brain barrier, is a potent neuroprotectant. CsA is a virtually specific blocker of the mitochondrial permeability transition (MPT) pore, a voltage-gated channel allowing molecules and ions with a mass < 1500 Daltons to pass the inner mitochondrial membrane. Experiments on isolated cells in vitro demonstrate that cell calcium accumulation or oxidative stress triggers the assembly of an MPT pore, which leads to collapse of the mitochondrial membrane potential, to ATP hydrolysis, to enhanced production of reactive oxygen species (ROS), and to cell death. The beneficial effect of CsA could thus be related to its ability to block the MPT pore.

Longer periods of ischemia, such as occurs after transient middle cerebral artery (MCA) occlusion, lead to pan-necrotic lesions (infarction). In the rat, recirculation following 2 h of MCA occlusion leads to partial normalization of the bioenergetic state but this is followed within 4–6 h by secondary bioenergetic failure. The latter seems unrelated to blockade of the microcirculation, but correlates to secondary mitochondrial failure. The brain damage incurred is ameliorated by the spin trap α-phenyl-N-butyl nitrone (PBN) and by the immunosuppressant FK506 even when given 1–3 h after the start of recirculation. The two drugs also prevent the secondary mitochondrial failure during early recirculation, suggesting that such failure is pathogenetically important. Probably, though, the mitochondrial dysfunction involves not only the assembly of an MPT pore but also other mechanisms. Since recirculation is associated with release of mitochondrial proteins it is not unlikely that such proteins, e.g. cytochrome c, trigger cascades of events leading to cell death.6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida A, Allen KL, Bates TE, Clark JB (1995) Effect of re-perfusion following cerebral ischaemia on the activity of the mitochondrial respiratory chain in the gerbil brain. J Neuro-chem 65: 1698–1703

    CAS  Google Scholar 

  2. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton S, Nicotera P (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15: 961–973

    Article  PubMed  CAS  Google Scholar 

  3. Bernardi P (1996) The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275: 5–9

    Google Scholar 

  4. Bernardi P, Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr 28: 131–138

    Article  PubMed  CAS  Google Scholar 

  5. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92: 7162–7166

    Article  PubMed  CAS  Google Scholar 

  6. Butcher SP, Henshall DC, Teramura Y, Iwasaki K, Sharkey J (1997) Neuroprotective actions of FK506 in experimental stroke: in vivo evidence against an antiexcitotoxic mechanism. J Neurosci 17: 6939–6946

    PubMed  CAS  Google Scholar 

  7. Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11: 465–469

    Article  PubMed  CAS  Google Scholar 

  8. Crompton M, Andreeva L (1993) On the involvement of a mitochondrial pore in reperfusion injury. Basic Res Cardiol 88: 513–23

    Article  PubMed  CAS  Google Scholar 

  9. Crompton M, Andreeva L (1994) On the interactions of Ca2+ and cyclosporin A with a mitochondrial inner membrane pore: a study using cobaltammine complex inhibitors of the Ca2+ uni-porter. Biochem J 302: 181–185

    PubMed  CAS  Google Scholar 

  10. Dawson VL, Dawson TM (1996) Nitric oxide actions in neuro-chemistry. Neurochem Int 29: 97–110

    Article  PubMed  CAS  Google Scholar 

  11. Deshpande JK, Siesjö BK, Wieloch T (1987) Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J Cereb Blood Flow Metab 7: 89–95

    Article  PubMed  CAS  Google Scholar 

  12. Drake M, Friberg H, Boris-MÖller F, Sakata K, Wieloch T (1996) The immunosuppressant FK506 ameliorates ischaemic damage in the rat brain. Acta Physiol Scand 158: 155–159

    Article  PubMed  CAS  Google Scholar 

  13. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997)Ischemic brain injury is mediated by the activation of poly (ADP-ribose) polymerase. J Cereb Blood Flow Metab 17: 1143–1151

    Article  PubMed  CAS  Google Scholar 

  14. Erecinska M, Silver I (1994) Ions and energy in mammalian brain. Prog Neurobiol 43: 37–71

    Article  PubMed  CAS  Google Scholar 

  15. Estevez AG, Spear N, Manuel SM, Radi R, Henderson CE, Barbeito L, Beckman JS (1998) Nitric oxide and Superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J Neurosci 18: 923–931

    PubMed  CAS  Google Scholar 

  16. Folbergrová J, Zhao Q, Katsura K, Siesjö BK (1995) N-tert-butyl-α-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc Natl Acad Sci USA 92: 5057–5061

    Article  PubMed  Google Scholar 

  17. Garcia JH, Liu KF, Relton JK (1995) Interleukin-1 receptor antagonist decreases the number of necrotic neurons in rats with middle cerebral artery occlusion. Am J Pathol 147: 1477–1486

    PubMed  CAS  Google Scholar 

  18. Griffiths EJ, Halestrap AP (1991) Further evidence that cyclo-sporin A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase. Implications for the immunosuppressive and toxic effects of cyclosporin. Biochem J 274: 611–614

    CAS  Google Scholar 

  19. Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65: 101–148

    PubMed  CAS  Google Scholar 

  20. Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, Shimizu-Sasamata M, Yuan J, Moskowitz MA (1997) Inhibition of interleukin 1 β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 94: 2007–2012

    Article  PubMed  CAS  Google Scholar 

  21. Henke W, Jung K (1993) Comparison of the effects of the immunosuppressive agents FK506 and cyclosporin A on rat kidney mitochondria. Biochem Pharmacol 46: 829–832

    Article  PubMed  CAS  Google Scholar 

  22. Hillered L, Siesjö BK, Arfors KE (1984) Mitochondrial response to transient forebrain ischemia and recirculation in the rat. J Cereb Blood Flow Metab 4: 438–446

    Article  PubMed  CAS  Google Scholar 

  23. Hillered L, Smith M-L, Siesjö BK (1985) Lactic acidosis and recovery of mitochondrial function following forebrain ischemia in the rat. J Cereb Blood Flow Metab 5: 259–266

    Article  PubMed  CAS  Google Scholar 

  24. Hirsch T, Marzo I, Kroemer G (1997) Role of the mitochondrial permeability transition pore in apoptosis. Biosci Rep 17: 67–76

    Article  PubMed  CAS  Google Scholar 

  25. Iadecola C, Zhang F, Xu X (1995) Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol 268: R286–292

    PubMed  CAS  Google Scholar 

  26. Igbavboa U, Zwizinski CW, Pfeiffer DR (1989) Release of mitochondrial matrix proteins through a Ca2+-requiring, cyclo-sporin-sensitive pathway. Biochem Biophys Res Commun 161: 619–625

    Article  PubMed  CAS  Google Scholar 

  27. Kamiike W, Fujikawa M, Koseki M, Sumimura J, Miyata M, Kawashima Y, Wada H, Tagawa K (1989) Different patterns of leakage of cytosolic and mitochondrial enzymes. Clin Chim Acta 185: 265–270

    Article  PubMed  CAS  Google Scholar 

  28. Kantrow SP, Piantadosi CA (1997) Release of cytochrome c from liver mitochondria during permeability transition. Biochem Biophys Res Commun 232: 669–671

    Article  PubMed  CAS  Google Scholar 

  29. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239: 57–69

    Article  PubMed  CAS  Google Scholar 

  30. Kristian T, Siesjö BK (1997) Changes in ionic fluxes during cerebral ischaemia. Int Rev Neurobiol 40: 27–45

    Article  PubMed  CAS  Google Scholar 

  31. Kuroda S, Katsura K, Hillered L, Bates TE, Siesjö BK (1996) Delayed treatment with α-phenyl-N-tert-butyl nitrone (PBN) attenuates secondary mitochondrial dysfunction after transient focal cerebral ischemia in the rat. Neurobiol Dis 3: 149–157

    Article  PubMed  CAS  Google Scholar 

  32. Kuroda S, Katsura KI, Tsuchidate R, Siesjö BK (1996) Secondary bioenergetic failure after transient focal ischaemia is due to mitochondrial injury. Acta Physiol Scand 156: 149–150

    Article  PubMed  CAS  Google Scholar 

  33. Kuroda S, Siesjö B (1996) Postischemic administration of FK506 reduces infarct volume following transient focal brain ischemia. Neurosci Res Comm 19: 83–90

    Article  CAS  Google Scholar 

  34. Kuroda S, Siesjö BK (1997) Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin Neurosci 4: 199–212

    PubMed  CAS  Google Scholar 

  35. Kurokawa T, Kobayashi H, Nonami T, Harada A, Nakao A, Sugiyama S, Ozawa T, Takagi H (1992) Beneficial effects of cyclosporine on postischemic liver injury in rats. Transplantation 53: 308–311

    Article  PubMed  CAS  Google Scholar 

  36. Li P-A, Vogel J, Smith M-L, Kuschinsky W, Siesjö BK (1998) Brain damage due to transient forebrain ischemia in hyperglycemic rats is not due to capillary plugging. Brain Res (in press)

    Google Scholar 

  37. Marchetti P, Hirsch T, Zamzami N, Castedo M, Decaudin D, Susin SA, Masse B, Kroemer G (1996) Mitochondrial permeability transition triggers lymphocyte apoptosis. J Immunol 157: 4830–4836

    PubMed  CAS  Google Scholar 

  38. Morley P, Hogan MJ, Hakim AM (1994) Calcium-mediated mechanisms of ischemic injury and protection. Brain Pathol 4: 37–47

    Article  PubMed  CAS  Google Scholar 

  39. Moskowitz MA, Dalkara T (1996) Nitric oxide and cerebral ischemia. Adv Neurol 71: 365–367; discussion 367-369

    PubMed  CAS  Google Scholar 

  40. Murphy AN, Bredesen DE, Cortopassi G, Wang E, Fiskum G (1996) Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc Natl Acad Sci USA 93: 9893–9898

    Article  PubMed  CAS  Google Scholar 

  41. Nakai A, Kuroda S, Kristián T, Siesjö BK (1997) The immunosuppressant drug FK506 ameliorates secondary mitochondrial dysfunction following transient focal cerebral ischemia in the rat. Neurobiol Dis 4: 288–300

    Article  PubMed  CAS  Google Scholar 

  42. Ouyang YB, Kuroda S, Kristián T, Siesjö BK (1997) Release of mitochondrial aspartate aminotransferase (mAST) following transient focal cerebral ischemia suggests the opening of a mitochondrial permeability transition pore. Neurosci Res Comm 20: 167–173

    Article  CAS  Google Scholar 

  43. Packer MA, Murphy MP (1994) Peroxynitrite causes calcium efflux from mitochondria which is prevented by cyclosporin A. FEBS Lett 345: 237–240

    Article  PubMed  CAS  Google Scholar 

  44. Packer MA, Murphy MP (1995) Peroxynitrite formed by simultaneous nitric oxide and Superoxide generation causes cyclosporin A-sensitive mitochondrial calcium efflux and depolarisation. Eur J Biochem 234: 231–239

    Article  PubMed  CAS  Google Scholar 

  45. Pelekanou V, Trezise AE, Moore AL, Kay JE (1991) FK506 and rapamycin do not affect platelet aggregation or mitochondrial function. Transplant Proc 23: 3200–3201

    PubMed  CAS  Google Scholar 

  46. Pelligrino DA (1993) Saying NO to cerebral ischemia [editorial]. J Neurosurg Anesthesiol 5: 221–231

    PubMed  CAS  Google Scholar 

  47. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–498

    Article  PubMed  CAS  Google Scholar 

  48. Pulsinelli WA, Duffy TE (1983) Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem 40: 1500–1503

    Article  PubMed  CAS  Google Scholar 

  49. Rehncrona S, Mela L, Siesjö BK (1979) Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia. Stroke 10: 437–446

    Article  PubMed  CAS  Google Scholar 

  50. Rothwell NJ, Strijbos PJ (1995) Cytokines in neurodegeneration and repair. Int J Dev Neurosci 13: 179–185

    Article  PubMed  CAS  Google Scholar 

  51. Sharkey J, Butcher SP (1994) Immunophilins mediate the neu-roprotective effects of FK506 in focal cerebral ischemia. Nature 371: 336–339

    Article  PubMed  CAS  Google Scholar 

  52. Shimizu S, Kamiike W, Hatanaka N, Nishimura M, Miyata M, Inoue T, Yoshida Y, Tagawa K, Matsuda H (1994) Enzyme release from mitochondria during reoxygenation of rat liver. Transplantation 57: 144–148

    Article  PubMed  CAS  Google Scholar 

  53. Siesjö B (1991) The role of calcium in cell death. In: Price D, Aguayo A, Thoenen H (eds) Neurodegenerative disorders: Mechanisms and prospects for therapy. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  54. Siesjö BK (1988) Historical overview. Calcium, ischemia, and death of brain cells. Ann NY Acad Sci 522: 638–661

    Google Scholar 

  55. Siesjö BK (1990) Calcium, excitotoxins, and brain damage. News Physiol Sci 5: 120–125

    Google Scholar 

  56. Siesjö BK (1992) Pathophysiology and treatment of focal cerebral ischemia. I. Pathophysiology. J Neurosurg 77: 169–184

    Google Scholar 

  57. Siesjö BK (1992) Pathophysiology and treatment of focal cerebral ischemia. II. Mechanisms of damage and treatment. J Neurosurg 77: 337–354

    Article  PubMed  Google Scholar 

  58. Siesjö BK, Kristián T, Katsura K (1995) The role of calcium in delayed postischemic brain damage. In: Moskowitz M, Caplan LR (eds) Cerebrovascular diseases, 19th Princeton Stroke Conference. Butterworth-Heinemann, Boston

    Google Scholar 

  59. Siesjö BK, Siesjö P (1996) Mechanisms of secondary brain injury. Eur J Anaesthesiol 13: 247–268

    Article  PubMed  Google Scholar 

  60. Sims NR (1991) Selective impairment of respiration in mitochondriaisolated from brain subregions following transient forebrain ischemia in the rat. J Neurochem 56: 1836–1844

    Article  PubMed  CAS  Google Scholar 

  61. Sims NR, Pulsinelli WA (1987) Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J Neurochem 49: 1367–1374

    Article  PubMed  CAS  Google Scholar 

  62. Susin SA, Zamzami N, Castedo M, Daugas E, Wang HG, Geley S, Fassy F, Reed JC, Kroemer G (1997) The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-l/CD95-and ceramide-induced apoptosis. J Exp Med 186: 25–37

    Article  PubMed  CAS  Google Scholar 

  63. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184: 1331–1341

    Article  PubMed  CAS  Google Scholar 

  64. Takahashi K, Greenberg JH, Jackson P, Maclin K, Zhang J (1997) Neuroprotective effects of inhibiting poly(ADP-ribose) synthetase on focal cerebral ischemia in rats. J Cereb Blood FlowMetab l7: 1137–1142

    Article  Google Scholar 

  65. Tsuchidate R, He Q-P, Smith M-L, Siesjö BK (1997) Regional cerebral blood flow during and after 2 hours of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 17: 1066–1073

    Article  PubMed  CAS  Google Scholar 

  66. Tymianski M, Tator CH (1996) Normal and abnormal calcium homeostasis in neurons: a basis for the pathophysiology of traumatic and ischemic central nervous system injury. Neuro-surgery 38: 1176–1195

    CAS  Google Scholar 

  67. Uchino H, Elmé r, Uchino K, Smith M-L, Siesjö BK (1998) Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat. Brain Res (in press)

    Google Scholar 

  68. Uchino H, Elmér E, Uchino K, Lindvall O, Siesjö BK (1995) Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischaemia in the rat. Acta Physiol Scand 155: 469–471

    Article  PubMed  CAS  Google Scholar 

  69. Wagner KR, Kleinholz M, de Courten-Myers GM, Myers RE (1992) Hyperglycemic versus normoglycemic stroke: topography of brain metabolites, intracellular pH, and infarct size. J Cereb Blood Flow Metab 12: 213–222

    Article  PubMed  CAS  Google Scholar 

  70. Wagner KR, Kleinholz M, Myers RE (1990) Delayed decreases in specific brain mitochondrial electron transfer complex activities and cytochrome concentrations following anoxia/ischemia. J Neurol Sci 100: 142–151

    Article  PubMed  CAS  Google Scholar 

  71. Wagner KR, Kleinholz M, Myers RE (1990) Delayed onset of neurologic deterioration following anoxia/ischemia coincides with appearance of impaired brain mitochondrial respiration and decreased cytochrome oxidase activity. J Cereb Blood Flow Metab 10: 417–423

    Article  PubMed  CAS  Google Scholar 

  72. Zaidan E, Sheu KF, Sims NR (1998) The pyruvate de-hydrogenase complex is partially inactivated during early re-circulation following short-term forebrain ischemia in rats. J Neurochem 70: 233–241

    Article  PubMed  CAS  Google Scholar 

  73. Zaidan E, Sims NR (1994) The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat. J Neurochem 63: 1812–1819

    Article  PubMed  CAS  Google Scholar 

  74. Zamzami N, Hirsch T, Dallaporta B, Petit PX, Kroemer G (1997) Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J Bioenerg Bio-memb 29: 185–193

    Article  CAS  Google Scholar 

  75. Zamzami N, Marchetti P, Castedo M, Hirsch T, Susin SA, Masse B, Kroemer G (1996) Inhibitors of permeability transition interfere with the disruption of the mitochondrial trans-membrance potential during apoptosis. FEBS Lett 384: 53–57

    Article  PubMed  CAS  Google Scholar 

  76. Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroemer G (1996) Mitochondrial control of nuclear apoptosis. J Exp Med 183: 1533–1544

    Article  PubMed  CAS  Google Scholar 

  77. Zhao Q, Pahlmark K, Smith M-L, Siesjö BK (1994) Delayed treatment with the spin trap α-phenyl-N-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats. Acta Physiol Scand 152: 349–350

    Article  PubMed  CAS  Google Scholar 

  78. Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241: 139–176

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Siesjö, B.K. et al. (1999). Role and Mechanisms of Secondary Mitochondrial Failure. In: Baethmann, A., Plesnila, N., Ringel, F., Eriskat, J. (eds) Current Progress in the Understanding of Secondary Brain Damage from Trauma and Ischemia. Acta Neurochirurgica Supplements, vol 73. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6391-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6391-7_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7312-1

  • Online ISBN: 978-3-7091-6391-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics