Skip to main content

A Short Introduction to Continuum Micromechanics

  • Chapter
Mechanics of Microstructured Materials

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 464))

Abstract

Basic issues in continuum mechanical modeling of microstructured materials are discussed and a number of physically based modeling approaches are presented, among them mean field and bounding methods as well as unit cell and embedding models. In addition, important aspects of multi-scale modeling strategies are addressed and a short introduction to the treatment of damage at the constituent level within micromechanical models is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • J. Aboudi. Micromechanical analysis of composites by the method of cells. Appl. Mech. Rev., 42:193–221, 1989.

    Google Scholar 

  • J. Aboudi. Mechanics of Composite Materials. Elsevier, Amsterdam, 1991.

    MATH  Google Scholar 

  • J. Aboudi, M.J. Pindera, and S.M. Arnold. Higher-order theory for periodic multiphase materials with inelastic phases. Int. J. Plast., 19:805–847, 2003.

    MATH  Google Scholar 

  • A. Anthoine. Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int. J. Sol. Struct., 32:137–163, 1995.

    MATH  Google Scholar 

  • M.S. Axelsen and R. Pyrz. Correlation between fracture toughness and the microstructure morphology in transversely loaded unidirectional composites. In R. Pyrz, editor, Micro structure-Property Interactions in Composite Materials, pages 15–26, Dordrecht, 1995. Kluwer Academic Publishers.

    Google Scholar 

  • Y. Benveniste. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater., 6:147–157, 1987.

    Google Scholar 

  • Y. Benveniste and G.J. Dvorak. On a correspondence between mechanical and thermal effects in two-phase composites. In G.J. Weng, M. Taya, and H. Abé, editors, Micromechanics and Inhomogeneity, pages 65–82, New York, NY, 1990. Springer-Verlag.

    Google Scholar 

  • M.J. Beran and J. Molyneux. Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media. Quart. Appl. Math., 24:107–118, 1966.

    MATH  Google Scholar 

  • H. Berns, A. Melander, D. Weichert, N. Asnafi, C. Broeckmann, and A. Gross-Weege. A new material for cold forging tools. Comput. Mater. Sci., 11:166–188, 1998.

    Google Scholar 

  • J.F.W. Bishop and R. Hill. A theory of the plastic distortion of a polycrystalline aggregate under combined stress. Phil. Mag., 42:414–427, 1951.

    MathSciNet  MATH  Google Scholar 

  • B. Bochenek and R. Pyrz. Reconstruction methodology for planar and spatial random microstructures. In R. Pyrz, J. Schjodt-Thomsen, J.C. Rauhe, T. Thomsen, and L.R. Jensen, editors, New Challenges in Mesomechanics, pages 565–572, Aalborg, Denmark, 2002. Aalborg University.

    Google Scholar 

  • H.J. Böhm. Numerical investigation of microplasticity effects in unidirectional longfiber reinforced metal matrix composites. Modell. Simul. Mater. Sci. Engng., 1:649–671, 1993.

    Google Scholar 

  • H.J. Böhm. Modeling the mechanical behavior of short fiber reinforced composites. This volume, pages 41–56, 2004.

    Google Scholar 

  • H.J. Böhm, A. Eckschlager, and W. Han. Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Corn-put. Mater. Sci., 25:42–53, 2002.

    Google Scholar 

  • H.J. Böhm and W. Han. Comparisons between three-dimensional and two-dimensional multi-particle unit cell models for particle reinforced metal matrix composites. Modell. Simul. Mater. Sei. Engng., 9:47–65, 2001.

    Google Scholar 

  • M. Bornert. Homogénéisation des milieux aléatoires: bornes et estimations. In M. Bornert, T. Bretheau, and P. Gilormini, editors, Homogénéisation en mécanique des materiaux 1. Matériaux aléatoires élastiques et milieux périodiques, pages 133–221, Paris, 2001. Editions Hermès.

    Google Scholar 

  • M. Bornert, T. Bretheau, and P. Gilormini, editors. Homogénéisation en mécanique des matériaux. Editions Hermès, Paris, 2001.

    Google Scholar 

  • M. Bornert, E. Hervé, C. Stolz, and A. Zaoui. Self consistent approaches and strain heterogeneities in two-phase elastoplastic materials. Appl. Mech. Rev., 47:66-S76, 1994.

    Google Scholar 

  • M. Bornert and P. Suquet. Propriétés non linéaires des composites: Approches par les potentiels. In M. Bornert, T. Bretheau, and P. Gilormini, editors, Homogénéisation en mécanique des matériaux 2. Comportements non linéaires et problèmes ouverts, pages 45–90, Paris, 2001. Editions Hermès.

    Google Scholar 

  • J.R. Brockenbrough and S. Suresh. Plastic deformation of continuous fiber-reinforced metal-matrix composites: Effects of fiber shape and distribution. Scr. metall. mater., 24:325–330, 1990.

    Google Scholar 

  • K.M. Brockmüller, O. Bernhardi, and M. Maier. Determination of fracture stress and strain of highly oriented oriented short fibre-reinforced composites using a fracture mechanics-based iterative finite-element method. J. Mater. Sci., 30:481–487, 1995.

    Google Scholar 

  • V.N. Bulsara, R. Talreja, and J. Qu. Damage initiation under transverse loading of unidirectional composites with arbitrarily distributed fibers. Compos. Sci. Technol., 59:673–682, 1999.

    Google Scholar 

  • V.A. Buryachenko. The overall elastoplastic behavior of multiphase materials with isotropic components. Acta Mech., 119:93–117, 1996.

    MATH  Google Scholar 

  • C.M. Chimani, H.J. Böhm, and F.G. Rammerstorfer. On stress singularities at free edges of bimaterial junctions — A micromechanical study. Scr. mater., 36:943–947, 1997.

    Google Scholar 

  • R.M. Christensen and K.H. Lo. Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Sol., 27:315–330, 1979.

    MATH  Google Scholar 

  • P.W. Chung, K.K. Tamma, and R.R. Namburu. Asymptotic expansion homogenization for heterogeneous media: Computational issues and applications. Composites A, 32A: 1291–1301, 2001.

    Google Scholar 

  • B. Clyne and P.J. Withers. An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  • F. Corvasce, P. Lipihski, and M. Berveiller. The effects of thermal, plastic and elastic stress concentrations on the overall behavior of metal matrix composites. In G.J. Dvorak, editor, Inelastic Deformation of Composite Materials, pages 389–408, New York, NY, 1991. Springer-Verlag.

    Google Scholar 

  • I. Doghri and A. Ouaar. Homogenization of two-phase elasto-plastic composite materials and structures. Int. J. Sol Struct, 40:1681–1712, 2003.

    MATH  Google Scholar 

  • M. Dong and S. Schmauder. Modeling of metal matrix composites by a self-consistent embedded cell model. Acta mater., 44:2465–2478, 1996.

    Google Scholar 

  • W.J. Drugan and J.R. Willis. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Sol., 44:497–524, 1996.

    MathSciNet  MATH  Google Scholar 

  • M.L. Dunn and H. Ledbetter. Elastic-plastic behavior of textured short-fiber composites. Acta mater., 45:3327–3340, 1997.

    Google Scholar 

  • G.J. Dvorak. Transformation field analysis of inelastic composite materials. Proc. Roy. Soc. London, A437:311–327, 1992.

    MathSciNet  MATH  Google Scholar 

  • A. Eckschlager. Simulation of Particle Failure in Particle Reinforced Ductile Matrix Composites. PhD thesis, TU Wien, Vienna, Austria, 2002.

    Google Scholar 

  • M. Elices, G.V. Guinea, J. Gomez, and J. Planas. The cohesive zone model: Advantages, limitations and challenges. Engng. Fract. Mech., 69:137–163, 2002.

    Google Scholar 

  • J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. London, A241:376–396, 1957.

    MathSciNet  MATH  Google Scholar 

  • J.D. Eshelby. The elastic field outside an ellipsoidal inclusion. Proc. Roy. Soc. London, A252:561–569, 1959.

    MathSciNet  MATH  Google Scholar 

  • F.D. Fischer, O. Kolednik, G.X. Shan, and F.G. Rammerstorfer. A note on calibration of ductile failure damage indicators. Int. J. Fract., 73:345–357, 1995.

    Google Scholar 

  • H.F. Fischmeister and B. Karlsson. Plastizitätseigenschaften grob-zweiphasiger Werkstoffe. Z. Metallkd., 68:311–327, 1977.

    Google Scholar 

  • C. Fond, A. Riccardi, R. Schirrer, and F. Montheillet. Mechanical interaction between spherical inhomogeneities: An assessment of a method based on the equivalent inclusion. Eur. J. Mech. A/Solids, 20:59–75, 2001.

    MATH  Google Scholar 

  • A.C. Gavazzi and D.C. Lagoudas. On the numerical evaluation of Eshelby’s tensor and its application to elastoplastic fibrous composites. Cornput. Mech., 7:12–19, 1990.

    Google Scholar 

  • M.G.D. Geers, R.A.B. Engelen, and R.J.M. Ubachs. On the numerical modelling of ductile damage with an implicit gradient-enhanced formulation. Rev. Eur. Elem. Fin., 10:173–191, 2001.

    MATH  Google Scholar 

  • S. Ghosh, K.H. Lee, and S. Moorthy. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model. Comput. Meth. Appl. Mech. Engng., 132:63–116, 1996.

    MATH  Google Scholar 

  • S. Ghosh, K.H. Lee, and P. Raghavan. A multi-level computational model for multi-scale analysis in composite and porous materials. Int. J. Sol. Struct., 38:2335–2385, 2001.

    MATH  Google Scholar 

  • S. Ghosh and S. Moorthy. Particle fracture simulation in non-uniform microstructures of metal-matrix composites. Acta mater., 46:965–982, 1998.

    Google Scholar 

  • C. Gonzalez and J. LLorca. A self-consistent approach to the elasto-plastic behavior of two-phase materials including damage. J. Mech. Phys. Sol., 48:675–692, 2000.

    MATH  Google Scholar 

  • A.L. Gurson. Continuum theory of ductile rupture by void nucleation and growth: Part I — Yield criteria and flow rules for porous ductile media. J. Engng. Mater. Technol., 99:2–15, 1977.

    Google Scholar 

  • A.A. Gusev. Representative volume element size for elastic composites: A numerical study. J. Mech. Phys. Sol, 45:1449–1459, 1997.

    MATH  Google Scholar 

  • Z. Hashin. Analysis of composite materials — A survey. J. Appl. Mech., 50:481–505, 1983.

    MATH  Google Scholar 

  • Z. Hashin and S. Shtrikman. A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Sol, 11:127–140, 1963.

    MathSciNet  MATH  Google Scholar 

  • R. Hill. The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. London, A65: 349–354, 1952.

    Google Scholar 

  • R. Hill. Continuum micro-mechanics of elastic-plastic polycrystals. J. Mech. Phys. Sol., 13:89–101, 1965a.

    MATH  Google Scholar 

  • R. Hill. A self-consistent mechanics of composite materials. J. Mech. Phys. Sol., 13: 213–222, 1965b.

    Google Scholar 

  • R. Hill. The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Sol., 15:79–95, 1967.

    Google Scholar 

  • P.J. Hine, H.R. Lusti, and A.A. Gusev. The numerical simulation of the elastic and thermoelastic properties of short fibre composites. Compos. Sci. Technol, 62:1445–1453, 2002.

    Google Scholar 

  • G.K. Hu, G. Guo, and D. Baptiste. A micromechanical model of influence of particle fracture and particle cluster on mechanical properties of metal matrix composites. Comput. Mater. Sci., 9:420–430, 1998.

    Google Scholar 

  • C. Huet. Application of variational concepts to size effects in elastic heterogeneous bodies. J. Mech. Phys. Sol, 38:813–841, 1990.

    MathSciNet  Google Scholar 

  • C. Huet. Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies. Mech. Mater., 31:787–829, 1999.

    Google Scholar 

  • H. Ismar and U. Reinert. Modelling and simulation of the macromechanical nonlinear behavior of fibre-reinforced ceramics on the basis of a micromechanical-statistical material description. Acta Mech., 120:47–60, 1997.

    MATH  Google Scholar 

  • T. Iung and M. Grange. Mechanical behavior of two-phase materials investigated by the finite element method: Necessity of three-dimensional modeling. Mater. Sci. Engng., A201:L8–L11, 1995.

    Google Scholar 

  • D. Jeulin and M. Ostoja-Starzewski, editors. Mechanics of Random and Multiscale Microstructures. Springer-Verlag, Vienna, 2001.

    MATH  Google Scholar 

  • M. Jiang, M. Ostoja-Starzewski, and I. Jasiuk. Scale-dependent bounds on effective elastoplastic response of random composites. J. Mech. Phys. Sol, 49:655–673, 2001.

    MATH  Google Scholar 

  • M. Jirásek. Comparative study on finite elements with embedded discontinuities. Comput. Meth. Appl. Mech. Engng., 188:307–330, 2000.

    MATH  Google Scholar 

  • J.W. Ju and L.Z. Sun. A novel formulation for the exterior point Eshelby’s tensor of an ellipsoidal inclusion. J. Appl. Mech., 66:570–574, 1999.

    Google Scholar 

  • J.W. Ju and L.Z. Sun. Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part I: Micromechanics-based formulation. Int. J. Sol Struct., 38:183–201, 2001.

    MATH  Google Scholar 

  • M. Kailasam, N. Aravas, and P. Ponte Castaneda. Porous metals with developing anisotropy: Constitutive models, computational issues and applications to deformation processing. Comput. Model Engng. Sci., 1:105–118, 2000.

    Google Scholar 

  • T. Kanit, S. Forest, I. Gallier, V. Mounoury, and D. Jeulin. Determination of the size of the representative volume element for random composites: Statistical and numerical approach. Int. J. Sol. Struct., 40:3647–3679, 2003.

    MATH  Google Scholar 

  • M. Karayaka and H. Sehitoglu. Thermomechanical deformation modeling of A12xxx-T4/SiCp composites. Acta metall. mater., 41:175–189, 1993.

    Google Scholar 

  • V.G. Kouznetsova, M.G.D. Geers, and W.A.M. Brekelmans. Multi-scale constitutive modeling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Num. Meth. Engng., 54:1235–1260, 2002.

    MATH  Google Scholar 

  • K.H. Lee, S. Moorthy, and S. Ghosh. Multiple scale computational model for damage in composite materials. Comput. Meth. Appl. Mech. Engng., 172:175–201, 1999.

    MATH  Google Scholar 

  • V.M. Levin. On the coefficients of thermal expansion of heterogeneous materials. Mech. Sol., 2:58–61, 1967.

    Google Scholar 

  • D.S. Li and M.R. Wisnom. Unidirectional tensile stress-strain response of BP-SiC fiber reinforced Ti-6A1–4V. J. Compos. Technol. Res., 16:225–233, 1994.

    Google Scholar 

  • M. Li, S. Ghosh, O. Richmond, H. Weiland, and T.N. Rouns. Three dimensional characterization and modeling of particle reinforced metal matrix composites, Part I: Quantitative description of microstructural morphology. Mater. Sci. Engng., A265: 153–173, 1999.

    Google Scholar 

  • J. LLorca. Deformation and damage in particle reinforced composites: Experiments and models. This volume, pages 87–124, 2004.

    Google Scholar 

  • K.Z. Markov and L. Preziosi. Heterogeneous Media: Micromechanics Modeling Methods and Simulations. Birkhäuser, Boston, MA, 2000.

    MATH  Google Scholar 

  • R. Masson, M. Bornert, P. Suquet, and A. Zaoui. An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J. Mech. Phys. Sol., 48:1203–1227, 2000.

    MathSciNet  MATH  Google Scholar 

  • P.E. McHugh. Introduction to crystal plasticity theory. This volume, pages 125–172, 2004.

    Google Scholar 

  • P.E. McHugh and P. Connolly. Modelling the thermo-mechanical behavior of an Al alloy-SiCp composite. Effects of particle shape and microscale failure. Comput. Mater. Sci., 3:199–206, 1994.

    Google Scholar 

  • J.C. Michel, H. Moulinec, and P. Suquet. Effective properties of composite materials with periodic microstructure: A computational approach. Comput. Meth. Appl. Mech. Engng., 172:109–143, 1999.

    MathSciNet  MATH  Google Scholar 

  • J.C. Michel, H. Moulinec, and P. Suquet. Composites à microstructure périodique. In M. Bornert, T. Bretheau, and P. Gilormini, editors, Homogénéisation en mécanique des materiaux 1. Matériaux aléatoires élastiques et milieux périodiques, pages 57–94, Paris, 2001. Editions Hermès.

    Google Scholar 

  • J.C. Michel and P. Suquet. Nonuniform transformation field analysis. Int. J. Sol. Struct., 40:6937–6955, 2003.

    MathSciNet  MATH  Google Scholar 

  • C. Miehe, J. Schröder, and J. Schotte. Computational homogenization analysis in finite plasticity. simulation of texture development in polycrystalline materials. Comput. Meth. Appl. Mech. Engng., 171:387–418, 1999.

    MATH  Google Scholar 

  • C.A. Miller and S. Torquato. Effective conductivity of hard sphere suspensions. J. Appl. Phys., 68:5486–5493, 1990.

    Google Scholar 

  • G.W. Milton. Bounds on the electromagnetic, elastic, and other properties of two-component composites. Phys. Rev. Lett., 46:542–545, 1981.

    Google Scholar 

  • G.W. Milton. The Theory of Composites. Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  • N. Moës, N. Cloirec, P. Cartraud, and J.F. Remacle. A computational approach to handle complex microstructure geometries. Comput. Meth. Appl. Mech. Engng., 192: 3163–3177, 2003.

    MATH  Google Scholar 

  • A. Molinari, G.R. Canova, and S. Ahzi. A self-consistent approach for large deformation viscoplasticity. Acta metall., 35:2983–2984, 1987.

    Google Scholar 

  • H. Moulinec and P. Suquet. A fast numerical method for computing the linear and nonlinear mechanical properties of composites. C. R. Acad. Sci. Paris, série II, 318: 1417–1423, 1994.

    MATH  Google Scholar 

  • W.H. Müller. Mathematical versus experimental stress analysis of inhomogeneities in solids. J. Phys. IV, 6:1–139-C1–148, 1996.

    Google Scholar 

  • T. Mura. Micromechanics of Defects in Solids. Martinus Nijhoff, Dordrecht, 1987.

    Google Scholar 

  • A. Needleman. A continuum model for void nucleation by inclusion debonding. J. Appl. Mech., 54:525–531, 1987.

    MATH  Google Scholar 

  • A. Needleman, S.R. Nutt, S. Suresh, and V. Tvergaard. Matrix, reinforcement, and interfacial failure. In S. Suresh, A. Mortensen, and A. Needleman, editors, Fundamentals of Metal Matrix Composites, pages 233–250, Boston, MA, 1993. Butterworth-Heinemann.

    Google Scholar 

  • S. Nemat-Nasser. Averaging theorems in finite deformation plasticity. Mech. Mater., 31: 493–523, 1999.

    Google Scholar 

  • S. Nemat-Nasser and M. Hori. Micromechanics: Overall Properties of Heterogeneous Solids. North-Holland, Amsterdam, 1993.

    MATH  Google Scholar 

  • M. Ostoja-Starzewski. Random field models of heterogeneous materials. Int. J. Sol. Struct., 35:2429–2455, 1998.

    MATH  Google Scholar 

  • R. Pandorf. Ein Beitrag zur FE-Simulation des Kriechens partikelverstärkter metallischer Werkstoffe. Reihe 5, Nr.585. VDI-Verlag, Düsseldorf, 2000.

    Google Scholar 

  • O.B. Pedersen. Thermoelasticity and plasticity of composites — I. Mean field theory. Acta metall., 31:1795–1808, 1983.

    Google Scholar 

  • R.H.J. Peerlings, M.G.D. Geers, R. de Borst, and W.A.M. Brekelmans. A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Sol. Struct., 38: 7723–7746, 2001.

    MATH  Google Scholar 

  • H.E. Pettermann. Derivation and Finite Element Implementation of Constitutive Material Laws for Multiphase Composites Based on Mori-Tanaka Approaches. Reihe 18, Nr.217. VDI-Verlag, Düsseldorf, 1997.

    Google Scholar 

  • H.E. Pettermann, A.F. Plankensteiner, H.J. Böhm, and F.G. Rammerstorfer. A thermo- elasto-plastic constitutive law for inhomogeneous materials based on an incremental Mori-Tanaka approach. Comput. Struct., 71:197–214, 1999.

    Google Scholar 

  • H.E. Pettermann and S. Suresh. A comprehensive unit cell model: A study of coupled effects in piezoelectric 1–3 composites. Int. J. Sol. Struct., 37:5447–5464, 2000.

    MATH  Google Scholar 

  • N. Phan-Thien and G.W. Milton. New third-order bounds on the effective moduli of n-phase composites. Quart. Appl. Math., 41:59–74, 1983.

    MathSciNet  MATH  Google Scholar 

  • P. Ponte Castaheda. Bounds and estimates for the properties on nonlinear inhomogeneous systems. Phil. Trans. Roy. Soc., A340:531–567, 1992.

    Google Scholar 

  • P. Ponte Castaneda and P. Suquet. Nonlinear composites. In E. van der Giessen and T.Y. Wu, editors, Advances in Applied Mechanics34, pages 171–302, New York, NY, 1998. Academic Press.

    Google Scholar 

  • P. Ponte Castaneda and J.R. Willis. The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Sol., 43:1919–1951, 1995.

    MathSciNet  MATH  Google Scholar 

  • R. Pyrz. Microstructural description of composites, statistical methods. This volume. pages 173–234, 2004.

    Google Scholar 

  • Y.P. Qiu and G.J. Weng. A theory of plasticity for porous materials and particle-reinforced composites. J. Appl. Mech., 59:261–268, 1992.

    MATH  Google Scholar 

  • S. Quilici and G. Cailletaud. FE simulation of macro-, meso- and microscales in polycrystalline plasticity. Comput. Mater. Sci., 16:383–390, 1999.

    Google Scholar 

  • A. Reuss. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM, 9:49–58, 1929.

    MATH  Google Scholar 

  • M. Rintoul and S. Torquato. Reconstruction of the structure of dispersions. J. Colloid Interf. Sci., 186:467–476, 1997.

    Google Scholar 

  • A.P. Roberts and E.J. Garboczi. Elastic properties of a tungsten-silver composite by reconstruction and computation. J. Mech. Phys. Sol, 47:2029–2055, 1999.

    MATH  Google Scholar 

  • M. Sautter, C. Dietrich, M.H. Poech, S. Schmauder, and H.F. Fischmeister. Finite element modelling of a transverse-loaded fibre composite: Effects of section size and net density. Comput. Mater. Sci., 1:225–233, 1993.

    Google Scholar 

  • R.A. Schapery. Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater., 2:380–404, 1968.

    Google Scholar 

  • S. Schmauder, J. Wulf, T. Steinkopff, and H. Fischmeister. Micromechanics of plasticity and damage in an Al/SiC metal matrix composite. In A. Pineau and A. Zaoui, editors, Micromechanics of Plasticity and Damage of Multiphase Materials, pages 255–262, Dordrecht, 1996. Kluwer.

    Google Scholar 

  • J. Segurado, J. LLorca, and C. González. On the accuracy of mean-field approaches to simulate the plastic deformation of composites. Scr. mater., 46:525–529, 2002.

    Google Scholar 

  • H. Shen and C.J. Lissenden. 3D finite element analysis of particle-reinforced aluminum. Mater. Sci. Engng., A338:271–281, 2002.

    Google Scholar 

  • V.B. Shenoy, R. Miller, E.B. Tadmor, R. Phillips, and M. Ortiz. Quasicontinuum models of interfacial structures and deformation. Phys. Rev. Lett., 80:742–745, 1998.

    Google Scholar 

  • J.A. Sherwood and H.M. Quimby. Micromechanical modeling of damage growth in titanium based metal-matrix composites. Comput. Struct., 56:505–54, 1995.

    Google Scholar 

  • T. Siegmund, R. Cipra, J. Liakus, B. Wang, M. LaForest, and A. Fatz. Processingmicrostructure-property relationships in short fiber reinforced carbon-carbon composite system. This volume, pages 235–258, 2004.

    Google Scholar 

  • R.J.M. Smit, W.A.M. Brekelmans, and H.E.H. Meijer. Prediction of the mechanical behavior of non-linear heterogeneous systems by multi-level finite element modeling. Comput. Meth. Appl. Mech. Engng., 155:181–192, 1998.

    MATH  Google Scholar 

  • P. Suquet. Elements of homogenization for inelastic solid mechanics. In E. Sanchez-Palencia and A. Zaoui, editors, Homogenization Techniques in Composite Media, pages 194–278, Berlin, 1987. Springer-Verlag.

    Google Scholar 

  • P. Suquet, editor. Continuum Micromechanics. Springer-Verlag, Vienna, 1997a.

    MATH  Google Scholar 

  • P. Suquet. Effective properties of nonlinear composites. In P. Suquet, editor, Continuum Micromechanics, pages 197–264, Vienna, 1997b. Springer-Verlag.

    Google Scholar 

  • T. Suzuki and P.K.L. Yu. Complex elastic wave band structures in three-dimensional periodic elastic media. J. Mech. Phys. Sol, 46:115–138, 1998.

    MATH  Google Scholar 

  • N. Takano, M. Zako, and T. Okazaki. Efficient modeling of microscopic heterogeneity and local crack in composite materials by finite element mesh superposition method. JSME Int. J. Srs.A, 44:602–609, 2001.

    Google Scholar 

  • G.P. Tandon and G.J. Weng. The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym. Compos., 5:327–333, 1984.

    Google Scholar 

  • G.P. Tandon and G.J. Weng. A theory of particle-reinforced plasticity. J. Appl. Mech., 55:126–135, 1988.

    Google Scholar 

  • M. Taya, W.D. Armstrong, M.L. Dunn, and T. Mori. Analytical study on dimensional changes in thermally cycled metal matrix composites. Mater. Sci. Engng., A143: 143–154, 1991.

    Google Scholar 

  • K. Terada and N. Kikuchi. Nonlinear homogenization method for practical applications. In S. Ghosh and M. Ostoja-Starzewski, editors, Computational Methods in Micromechanics, pages 1–16, New York, NY, 1996. ASME.

    Google Scholar 

  • K. Terada, I. Saiki, K. Matsui, and Y. Yamakawa. Two-scale kinematics and linearization for simultaneous two-scale analysis of periodic heterogeneous solids at finite strain. Comput. Meth. Appl. Mech. Engng., 192:3531–3563, 2003.

    MathSciNet  MATH  Google Scholar 

  • J.F. Thovert, I.C. Kim, S. Torquato, and A. Acrivos. Bounds on the effective properties of poly dispersed suspensions of spheres: An evaluation of two relevant parameters. J. Appl. Phys., 67:6088–6098, 1990.

    Google Scholar 

  • S. Torquato. Random heterogeneous media: Microstructure and improved bounds on effective properties. Appl. Mech. Rev., 44:37–75, 1991.

    MathSciNet  Google Scholar 

  • S. Torquato. Morphology and effective properties of disordered heterogeneous media. Int. J. Sol. Struct., 35:2385–2406, 1998.

    MATH  Google Scholar 

  • S. Torquato. Random Heterogeneous Media. Springer-Verlag. New York, NY, 2001.

    Google Scholar 

  • S. Torquato, F. Lado, and P.A. Smith. Bulk properties of two-phase disordered media. IV. Mechanical properties of suspensions of penetrable spheres at nondilute concentrations. J. Chem. Phys., 86:6388–6392, 1987.

    Google Scholar 

  • V. Tvergaard. Analysis of tensile properties for a whisker-reinforced metal-matrix composite. Acta metall. mater., 38:185–194, 1990.

    Google Scholar 

  • V. Tvergaard. Fibre debonding and breakage in a whisker-reinforced metal. Mater. Sci. Engng., A190:215–222, 1994.

    Google Scholar 

  • V. Tvergaard and A. Needleman. Analysis of the cup-cone fracture in a round tensile bar. Acta metall, 32:157–169, 1984.

    Google Scholar 

  • E. van der Giessen. Creep rupture in polycrystalline materials. This volume, pages 283–306, 2004a.

    Google Scholar 

  • E. van der Giessen. Discrete dislocation plasticity. This volume, pages 259–282, 2004b.

    Google Scholar 

  • N. Vejen and R. Pyrz. Transverse crack growth in glass/epoxy composites with exactly positioned long fibers. Part II: Numerical. Composites B, 33B:279–290, 2002.

    Google Scholar 

  • W. Voigt. Über die Beziehung zwischen den beiden Elasticitäts-Constanten isotroper Körper. Ann. Phys., 38:573–587, 1889.

    MathSciNet  Google Scholar 

  • W. Vonach. A General Solution to the Wrinkling Problem of Sandwiches. Reihe 18, Nr.268. VDI-Verlag, Düsseldorf, 2001.

    Google Scholar 

  • K. Wakashima, H. Tsukamoto, and B.H. Choi. Elastic and thermoelastic properties of metal matrix composites with discontinuous fibers or particles: Theoretical guidelines toward materials tailoring. In The Korea-Japan Metals Symposium on Composite Materials, pages 102–115, Seoul, 1988. The Korean Institute of Metals.

    Google Scholar 

  • L.J. Walpole. On bounds for the overall elastic moduli of inhomogeneous systems — I. J. Mech. Phys. Sol, 14:151–162, 1966.

    MATH  Google Scholar 

  • S. Weihe and B.H. Kröplin. The fictitious crack concept in the mechanics of composites. In D.R.J. Owen, E. Ohate, and E. Hinton, editors, Computational Plasticity: Fundamentals and Applications, pages 1215–1226, Swansea, 1995. Pineridge Press.

    Google Scholar 

  • G.J. Weng. The theoretical connection between Mori-Tanaka theory and the Hashin-Shtrikman-Walpole bounds. Int. J. Engng. Sci., 28:1111–1120, 1990.

    MATH  Google Scholar 

  • J.R. Willis. Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J. Mech. Phys. Sol, 25:185–202, 1977.

    MATH  Google Scholar 

  • J.R. Willis. The overall response of nonlinear composite media. Eur. J. Mech. A/Solids, 19:S165–S184, 2000.

    Google Scholar 

  • P.J. Withers. The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Phil Mag., A59: 759–781, 1989.

    Google Scholar 

  • J. Wulf, T. Steinkopff, and H. Fischmeister. FE-simulation of crack paths in the real microstructure of an Al(6061)/SiC composite. Acta mater., 44:1765–1779, 1996.

    Google Scholar 

  • S. Yang, A. Tewari, and A. Gokhale. Modeling of non-uniform spatial arrangement of fibers in a ceramic matrix composite. Acta mater., 45:3059–3069, 1997.

    Google Scholar 

  • A. Zaoui. Plasticité: Approches en champ moyen. In M. Bornert, T. Bretheau, and P. Gilormini, editors, Homogénéisation en mécanique des matériaux 2. Comportements non linéaires et problèmes ouverts, pages 17–44, Paris, 2001. Editions Hermès.

    Google Scholar 

  • A. Zaoui. Continuum micromechanics: Survey. J. Engng. Mech., 128:808–816, 2002.

    Google Scholar 

  • J. Zeman and M. Sejnoha. Numerical evaluation of effective elastic properties of graphite fiber tow impregnated by polymer matrix. J. Mech. Phys. Sol, 49:69–90, 2001.

    MATH  Google Scholar 

  • Y.H. Zhao and G.J. Weng. A theory of inclusion debonding and its influence on the stress-strain relations of a ductile matrix composite. Int. J. Dam. Mech., 4:196–211, 1995.

    Google Scholar 

  • R.W. Zimmerman. Hashin-Shtrikman bounds on the Poisson ratio of a composite material. Mech. Res. Comm., 19:563–569, 1992.

    MathSciNet  MATH  Google Scholar 

  • T.I. Zohdi. Constrained inverse formulations in random material design. Comput. Meth. Appl. Mech. Engng., 192:3179–3194, 2003.

    MATH  Google Scholar 

  • T.I. Zohdi and P. Wriggers. A model for simulating the deterioration of structural-scale material responses of microheterogeneous solids. Comput. Meth. Appl Mech. Engng., 190:2803–2823, 2001.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Böhm, H.J. (2004). A Short Introduction to Continuum Micromechanics. In: Böhm, H.J. (eds) Mechanics of Microstructured Materials. International Centre for Mechanical Sciences, vol 464. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2776-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2776-6_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-24154-7

  • Online ISBN: 978-3-7091-2776-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics