Skip to main content

The derivation of swarming models: Mean-field limit and Wasserstein distances

  • Chapter
Collective Dynamics from Bacteria to Crowds

Abstract

These notes are devoted to a summary on the mean-field limit of large ensembles of interacting particles with applications in swarming models. We first make a summary of the kinetic models derived as continuum versions of second order models for swarming. We focus on the question of passing from the discrete to the continuum model in the Dobrushin framework. We show how to use related techniques from fluid mechanics equations applied to first order models for swarming, also called the aggregation equation. We give qualitative bounds on the approximation of initial data by particles to obtain the mean-field limit for radial singular (at the origin) potentials up to the Newtonian singularity. We also show the propagation of chaos for more restricted set of singular potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  • M. Agueh, R. Illner, and A. Richardson, Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type, Kinetic and Related Models 4:1–16, 2011.

    Google Scholar 

  • L.A. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, Birkhäuser, 2005.

    Google Scholar 

  • G. Albi, L. Pareschi, Modelling self-organized systems interacting with few individuals: from microscopic to macroscopic dynamics, Applied Math. Letters, 26:397–401, 2013.

    Google Scholar 

  • I. Aoki, A Simulation Study on the Schooling Mechanism in Fish, Bull. Jap. Soc. Sci. Fisheries 48:1081–1088, 1982.

    Google Scholar 

  • D. Balagué, and J. A. Carrillo, Aggregation equation with growing at infinity attractive-repulsive potentials, Proceedings of the 13th International Conference on Hyperbolic Problems, Series in Contemporary Applied Mathematics CAM 17, Higher Education Press, 1:136–147, 2012.

    Google Scholar 

  • D. Balagué, Carrillo, T. J. A., Laurent, and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: radial ins/stability, to appear in Physica D, 2013.

    Google Scholar 

  • D. Balagué, Carrillo, T. J. A., Laurent, and G. Raoul, Dimensionality of Local Minimizers of the Interaction Energy, to appear in Arch. Rat. Mech. Anal., 2013.

    Google Scholar 

  • A. Barbaro, K. Taylor, P. F. Trethewey, L. Youseff, and B. Birnir, Discrete and continuous models of the dynamics of pelagic fish: application to the capelin, M ath. and Computers in Simulation, 79:3397–3414, 2009.

    Google Scholar 

  • A. L. Bertozzi and T. Laurent, Finite-time blow-up of solutions of an aggregation equation in Rn , Comm. Math. Phys., 274:717–735, 2007.

    Google Scholar 

  • A. L. Bertozzi, J. A. Carrillo, and T. Laurent, Blowup in multidimensional aggregation equations with mildly singular interaction kernels, N onlinearity, 22:683–710, 2009.

    Google Scholar 

  • A. L. Bertozzi, T. Laurent, and J. Rosado, Lp theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 43:415–430, 2010.

    Google Scholar 

  • A. L. Bertozzi, T. Laurent, and F. Léger, Aggregation and spreading via the newtonian potential: the dynamics of patch solutions, M athematical Models and Methods in Applied Sciences, 22(supp01):1140005, 2012.

    Google Scholar 

  • M. Bodnar, J.J.L. Velazquez, Friction dominated dynamics of interacting particles locally close to a crystallographic lattice, accepted in Math. Methods Appl. Sci., 2012.

    Google Scholar 

  • E. Boissard, Simple bounds for convergence of empirical and occupation measures in 1-Wasserstein distance, Electron. J. Probab. 16:2296–2333, 2011.

    Google Scholar 

  • E. Boissard, Problémes d’interaction discret-continu et distances de Wasserstein, Thesis, http://thesesups.ups-tlse.fr/1389/, 2011.

    Google Scholar 

  • F. Bolley, J. A. Cañizo, and J. A. Carrillo Stochastic mean-field limit: non-Lipschitz forces & swarming, Math. Mod. Meth. Appl. Sci., 21:2179-2210, 2011.

    Google Scholar 

  • F. Bolley, A. Guillin, and C. Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces, Probab. Theory Related Fields, 137:541–593, 2007.

    Google Scholar 

  • W. Braun and K. Hepp, The Vlasov Dynamics and Its Fluctuations in the 1/N Limit of Interacting Classical Particles, Commun. Math. Phys., 56:101–113, 1977.

    Google Scholar 

  • M. Burger, P. Markowich, and J. Pietschmann, Continuous limit of a crowd motion and herding model: Analysis and numerical simulations, Kinetic and Related Methods, 4:1025–1047, 2011.

    Google Scholar 

  • S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau, Self-Organization in Biological Systems, Princeton University Press, 2003.

    Google Scholar 

  • J.A. Cañizo, J.A. Carrillo, and J. Rosado, Collective Behavior of Animals: Swarming and Complex Patterns, Arbor, 186:1035–1049, 2010.

    Google Scholar 

  • J.A. Cañizo, J.A. Carrillo, and J. Rosado : A well-posedness theory in measures for some kinetic models of collective motion, M ath. Mod. Meth. Appl. Sci., 21:515–539, 2011.

    Google Scholar 

  • J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156:229–271, 2011.

    Google Scholar 

  • J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepčev, Confinement in nonlocal interaction equations, N onlinear Anal., 75(2):550–558, 2012.

    Google Scholar 

  • J. A. Carrillo, M. R. D’Orsogna, and V. Panferov, Double milling in selfpropelled swarms from kinetic theory, Kinetic and Related Models 2:363-378, 2009.

    Google Scholar 

  • J.-A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani, Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42:218–236, 2010.

    Google Scholar 

  • J.A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil, Particle, Kinetic, and Hydrodynamic Models of Swarming, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Series: Modelling and Simulation in Science and Technology, Birkhauser, pages 297-336, 2010.

    Google Scholar 

  • J.A. Carrillo, A. Klar, S. Martin, and S. Tiwari, Self-propelled interacting particle systems with roosting force, M ath. Mod. Meth. Appl. Sci., 20:1533–1552, 2010.

    Google Scholar 

  • J. A. Carrillo, V. Panferov, S. Martin, A new interaction potential for swarming models, to appear in Physica D, 2013.

    Google Scholar 

  • J.A. Carrillo, R.J. McCann, and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Matemática Iberoamericana, 19:1–48, 2003.

    Google Scholar 

  • J.A. Carrillo, R.J. McCann, and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Rat. Mech. Anal., 179:217–263, 2006.

    Google Scholar 

  • T. Champion, L. D. Pascale, and P. Juutinen, The-Wasserstein distance: local solutions and existence of optimal transport maps, SIAM J. Math. Anal., 40:1–20, 2008.

    Google Scholar 

  • I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, Effective leadership and decision making in animal groups on the move, N ature 433:513–516, 2005.

    Google Scholar 

  • F. Cucker and S. Smale, Emergent behavior in flocks, I EEE Trans. Automat. Control 52:852-862, 2007.

    Google Scholar 

  • C. De Lellis and L. Székelyhidi, The Euler equations as a differential inclusion, Ann. of Math. 170:1417–1436, 2009.

    Google Scholar 

  • R. Dobrushin, Vlasov equations, Funct. Anal. Appl. 13:115–123, 1979.

    Google Scholar 

  • M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. Chayes, Selfpropelled particles with soft-core interactions: patterns, stability, and collapse, Phys. Rev. Lett. 96, 2006.

    Google Scholar 

  • R. Eftimie, G. de Vries, and M.A. Lewis, Complex spatial group patterns result from different animal communication mechanisms, Proceedings of the National Academy of Sciences, 104:6974–6979, 2007.

    Google Scholar 

  • N. Fournier, M. Hauray, and S. Mischler, Propagation of chaos for the 2D viscous vortex model, preprint http://arxiv.org/abs/1212.1437

    Google Scholar 

  • I. Gallagher, L. St-Raymond, and B. Texier, From Newton to Boltzmann: hard spheres and short-range potentials, preprint http://arxiv.org/abs/1208.5753

    Google Scholar 

  • C. R. Givens and R. M. Shortt, A class of Wasserstein metrics for probability distributions, M ichigan Math. J., 31(2):231–240, 1984.

    Google Scholar 

  • F. Golse, The Mean-Field Limit for the Dynamics of Large Particle Systems, Journées équations aux dérivées partielles, 9:1–47, 2003.

    Google Scholar 

  • J. Goodman, T. Hou, and J. Lowengrub Convergence of the point vortex method for the 2-D Euler equations, Comm. Pure Appl. Math. 43:415–430, 1990.

    Google Scholar 

  • C. Graham, and S. Méléard, Stochastic particle approximations for generalized Boltzmann models and convergence estimates, The Annals of Probability, 25:115–132, 1997.

    Google Scholar 

  • S.-Y. Ha, J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci. 7 (2) (2009) 297–325.

    Google Scholar 

  • S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models 1:415–435, 2008.

    Google Scholar 

  • J. Haskovec, Flocking dynamics and mean-field limit in the Cucker-Smaletype model with topological interactions, preprint, 2013.

    Google Scholar 

  • M. Hauray, Wasserstein distances for vortices approximation of Euler-type equations, M ath. Mod. Meth. Appl. Sci., 19:1357–1384, 2009.

    Google Scholar 

  • M. Hauray and P.-E. Jabin, Particles approximations of Vlasov equations with singular forces : Propagation of chaos, preprint.

    Google Scholar 

  • M. Hauray and S. Mischler. On Kac’s chaos and related problems, preprint.

    Google Scholar 

  • C. K. Hemelrijk and H. Hildenbrandt, Self-Organized Shape and Frontal Density of Fish Schools, Ethology 114, 2008.

    Google Scholar 

  • A. Huth and C. Wissel, The Simulation of the Movement of Fish Schools, J. Theo. Bio., 1992.

    Google Scholar 

  • M. Kac, Foundations of kinetic theory, I n Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III (Berkeley and Los Angeles, 1956), University of California Press, pp. 171–197.

    Google Scholar 

  • H. P. Mckean, An exponential formula for solving Boltzmann’s equation for a Maxwellian gas, J. Combinatorial Theory, 2:358–382, 1967.

    Google Scholar 

  • H. P. Mckean, The central limit theorem for Carleman’s equation, I srael J. Math., 21:54–92, 1975.

    Google Scholar 

  • T. Kolokonikov, H. Sun, D. Uminsky, and A. Bertozzi. Stability of ring patterns arising from 2d particle interactions, Physical Review E, 84:015203, 2011.

    Google Scholar 

  • O.E. III. Lanford Time evolution of large classical systems. Lecture Notes in Phys. 38, Springer Verlag 1975, p. 1–111.

    Google Scholar 

  • T. Laurent, Local and global existence for an aggregation equation, Communications in Partial Differential Equations, 32:1941–1964, 2007.

    Google Scholar 

  • H. Levine, W.-J. Rappel and I. Cohen, Self-organization in systems of selfpropelled particles, Phys. Rev. E, 63:017101-1/4, 2000.

    Google Scholar 

  • Y. X. Li, R. Lukeman, and L. Edelstein-Keshet, Minimal mechanisms for school formation in self-propelled particles, Physica D, 237:699–720, 2008.

    Google Scholar 

  • R. J. McCann, Stable rotating binary stars and fluid in a tube, H ouston J. Math., 32(2):603–631, 2006.

    Google Scholar 

  • A. Majda and A.L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, United Kingdom, 2002.

    Google Scholar 

  • C. Marchioro and M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences 96, Springer-Verlag, New York, 1994.

    Google Scholar 

  • S. Méléard, Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, In Probabilistic models for nonlinear partial differential equations (Montecatini Terme, 1995), Lecture Notes in Math. 1627. Springer, Berlin, 1996.

    Google Scholar 

  • S. Mischler and C. Mouhot, Kac’s program in kinetic theory, to appear in Inventiones mathematicae, 2013.

    Google Scholar 

  • A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Bio., 38:534–570, 1999.

    Google Scholar 

  • A. Mogilner, L. Edelstein-Keshet, L. Bent, and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., 47:353–389, 2003.

    Google Scholar 

  • H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, In Kinetic theories and the Boltzmann equation (Montecatini Terme, 1981), Lecture Notes in Math. 1048. Springer, Berlin, 1984.

    Google Scholar 

  • H. Osada, Propagation of chaos for the two-dimensional Navier-Stokes equation, In Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), Academic Press, Boston, 1987, 303–334.

    Google Scholar 

  • F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26:101–174, 2001.

    Google Scholar 

  • J. Parrish, and L. Edelstein-Keshet, Complexity, pattern, and evolutionary trade-offs in animal aggregation, Science, 294: 99–101, 1999.

    Google Scholar 

  • L. Perea, G. Gómez, P. Elosegui, Extension of the cucker–smale control law to space flight formations, AIAA Journal of Guidance, Control, and Dynamics, 32:527–537, 2009.

    Google Scholar 

  • S. Schochet, The point-vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math. 49:911–965, 1996.

    Google Scholar 

  • H. Spohn, Large scale dynamics of interacting particles, Texts and Monographs in Physics, Springer, 1991.

    Google Scholar 

  • A.-S. Sznitman, Topics in propagation of chaos, In Ecole d’Eté de Probabilités de Saint-Flour XIX 1989, Lecture Notes in Math. 1464. Springer, Berlin, 1991.

    Google Scholar 

  • C.M. Topaz and A.L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65:152–174, 2004.

    Google Scholar 

  • C.M. Topaz, A.L. Bertozzi, and M.A. Lewis, A nonlocal continuum model for biological aggregation, Bulletin of Mathematical Biology, 68:1601–1623, 2006.

    Google Scholar 

  • T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75:1226–1229, 1995.

    Google Scholar 

  • C. Villani, Limite de champ moyen, Lecture notes, 2002.

    Google Scholar 

  • C. Villani, Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 CISM, Udine

About this chapter

Cite this chapter

Carrillo, J.A., Choi, YP., Hauray, M. (2014). The derivation of swarming models: Mean-field limit and Wasserstein distances. In: Muntean, A., Toschi, F. (eds) Collective Dynamics from Bacteria to Crowds. CISM International Centre for Mechanical Sciences, vol 553. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1785-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1785-9_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1784-2

  • Online ISBN: 978-3-7091-1785-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics