Skip to main content

Analysis of Labeled Quantitative Mass Spectrometry Proteomics Data

  • Chapter
  • First Online:
Computational Medicine

Abstract

Proteomics has an important role in biomedical research. Using mass spectrometry (MS), researchers are able to identify proteins on a large scale. Mass spectrometers measure mass spectra of peptides on the basis of which software packages can infer protein detection. By tagging proteins from distinct samples with heavy and light mass labels, relative protein abundances in different conditions are compared, e.g., healthy versus diseased individuals. The quantification of proteins in complex samples, the monitoring of specific post-translational modification (PTM) changes, and the identification of biomarkers pose challenges to the experimentalists and to the algorithmic and statistical techniques applied.

This chapter gives an overview of the methods used to label proteins and to follow their changes in abundance in biomedical samples, and of the bioinformatics methods related to isotopic and isobaric labeling. Tools to process the data and to perform downstream analyses are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mass spectrometers are capable of separating and detecting individual ions—even those that only differ by a single atomic mass unit. As a result molecules containing different isotopes can be distinguished. Natural isotopes occur with well-known abundances and depend on molecular formula of peptide.

References

  • Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham AJL, Keshishian H, Hall SC, Allen S, Blackman RK, Borchers CH, Buck C, Cardasis HL, Cusack MP, Dodder NG, Gibson BW, Held JM, Hiltke T, Jackson A, Johansen EB, Kinsinger CR, Li J, Mesri M, Neubert TA, Niles RK, Pulsipher TC, Ransohoff D, Rodriguez H, Rudnick PA, Smith D, Tabb DL, Tegeler TJ, Variyath AM, Vega-Montoto LJ, Wahlander A, Waldemarson S, Wang M, Whiteaker JR, Zhao L, Anderson NL, Fisher SJ, Liebler DC, Paulovich AG, Regnier FE, Tempst P, Carr SA (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27(7):633–641

    Article  PubMed  CAS  Google Scholar 

  • Allmer J (2010) Existing bioinformatics tools for the quantitation of post-translational modifications. Amino Acids 42(1):129–138

    Article  PubMed  Google Scholar 

  • Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, Derow C, Feuermann M, Ghanbarian AT, Kerrien S, Khadake J, Kerssemakers J, Leroy C, Menden M, Michaut M, Montecchi-Palazzi L, Neuhauser SN, Orchard S, Perreau V, Roechert B, van Eijk K, Hermjakob H (2010) The intact molecular interaction database in 2010. Nucleic Acids Res 38(Database issue):D525–D531

    Article  PubMed  CAS  Google Scholar 

  • Arntzen MO, Koehler CJ, Barsnes H, Berven FS, Treumann A, Thiede B (2011) Isobariq: software for isobaric quantitative proteomics using iptl, itraq, and tmt. J Proteome Res 10(2):913–920

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29

    Article  PubMed  CAS  Google Scholar 

  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300

    Google Scholar 

  • Bertsch A, GrPl C, Reinert K, Kohlbacher O (2011) Openms and topp open source software for lc-ms data analysis. Methods Mol Biol 696:353–367

    Article  PubMed  CAS  Google Scholar 

  • Boehm AM, Ptz S, Altenhfer D, Sickmann A, Falk M (2007) Precise protein quantification based on peptide quantification using itraq. BMC Bioinformatics 8:214

    Article  PubMed  Google Scholar 

  • Breitwieser FP, Mueller A, Dayon L, Koecher T, Hainard A, Pichler P, Schmidt-Erfurth U, Superti-Furga G, Sanchez JC, Mechtler K, Bennett KL, Colinge J (2011) General statistical modeling of data from protein relative expression isobaric tags. J Proteome Res 10(6):2758–2766

    Article  PubMed  CAS  Google Scholar 

  • Burkard TR, Rix U, Breitwieser FP, Superti-Furga G, Colinge J (2010) A computational approach to analyze the mechanism of action of the kinase inhibitor bafetinib. PLoS Comput Biol 6(11):e1001,001

    Google Scholar 

  • Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Brckstmmer T, Bennett KL, Superti-Furga G, Colinge J (2011) Initial characterization of the human central proteome. BMC Syst Biol 5:17

    Article  PubMed  CAS  Google Scholar 

  • Carrillo B, Yanofsky C, Laboissiere S, Nadon R, Kearney RE (2010) Methods for combining peptide intensities to estimate relative protein abundance. Bioinformatics 26(1):98–103

    Article  PubMed  CAS  Google Scholar 

  • Ceol A, Chatr Aryamontri A, Licata L, Peluso D, Briganti L, Perfetto L, Castagnoli L, Cesareni G (2010) Mint, the molecular interaction database: 2009 update. Nucleic Acids Res 38(Database issue):D532–D539

    Article  PubMed  CAS  Google Scholar 

  • Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11(6):427–439

    Article  PubMed  CAS  Google Scholar 

  • Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, Gehan EA, Wang Y (2008) The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer 8(1):37–49

    Article  PubMed  CAS  Google Scholar 

  • Colaert N, Helsens K, Impens F, Vandekerckhove J, Gevaert K (2010) Rover: a tool to visualize and validate quantitative proteomics data from different sources. Proteomics 10(6):1226–1229

    Article  PubMed  CAS  Google Scholar 

  • Colinge J, Bennett KL (2007) Introduction to computational proteomics. PLoS Comput Biol 3(7):e114

    Article  PubMed  Google Scholar 

  • Colinge J, Rix U, Bennett KL, Superti-Furga G (2012) Systems biology analysis of protein-drug interactions. Proteomics Clinical Applications 6:102–116

    Google Scholar 

  • Cox J, Mann M (2008) Maxquant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  PubMed  CAS  Google Scholar 

  • Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299

    Article  PubMed  CAS  Google Scholar 

  • Dudoit S, Shaffer J, Boldrick J (2003) Multiple hypothesis testing in microarray experiments. Stat Sci 18:71–103

    Google Scholar 

  • Eng J, McCormack A, Yates J III (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989

    Article  CAS  Google Scholar 

  • Gatto L, Lilley KS (2012) MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics 28:288–289

    Google Scholar 

  • Geiger T, Wisniewski JR, Cox J, Zanivan S, Kruger M, Ishihama Y, Mann M (2011) Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat Protoc 6(2):147–157

    Article  PubMed  CAS  Google Scholar 

  • Gouw JW, Krijgsveld J, Heck AJR (2010) Quantitative proteomics by metabolic labeling of model organisms. Mol Cell Proteomics 9(1):11–24

    Article  PubMed  CAS  Google Scholar 

  • Grimsrud PA, Swaney DL, Wenger CD, Beauchene NA, Coon JJ (2010) Phosphoproteomics for the masses. ACS Chem Biol 5(1):105–119

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  PubMed  CAS  Google Scholar 

  • Han DK, Eng J, Zhou H, Aebersold R (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19(10):946–951

    Article  PubMed  CAS  Google Scholar 

  • Hanke S, Mann M (2009) The phosphotyrosine interactome of the insulin receptor family and its substrates irs-1 and irs-2. Mol Cell Proteomics 8(3):519–534

    Article  PubMed  CAS  Google Scholar 

  • Higgs RE, Knierman MD, Gelfanova V, Butler JP, Hale JE (2005) Comprehensive label-free method for the relative quantification of proteins from biological samples. J Proteome Res 4(4):1442–1450

    Article  PubMed  CAS  Google Scholar 

  • Hsu JL, Huang SY, Chow NH, Chen SH (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75(24):6843–6852

    Article  PubMed  CAS  Google Scholar 

  • Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA (2007) David bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35(WebServer issue):W169–W175

    Article  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using David bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  • Huber W, von Heydebreck A, Sltmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–S104

    Article  PubMed  Google Scholar 

  • Hundertmark C, Fischer R, Reinl T, May S, Klawonn F, Jnsch L (2009) Ms-specific noise model reveals the potential of itraq in quantitative proteomics. Bioinformatics 25(8):1004–1011

    Article  PubMed  CAS  Google Scholar 

  • Johnson KL, Muddiman DC (2004) A method for calculating 16o/18o peptide ion ratios for the relative quantification of proteomes. J Am Soc Mass Spectrom 15(4):437–445

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) Kegg for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38(Database issue):D355–D360

    Article  PubMed  CAS  Google Scholar 

  • Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS (2010) Addressing accuracy and precision issues in itraq quantitation. Mol Cell Proteomics 9(9):1885–1897

    Article  PubMed  CAS  Google Scholar 

  • Keller A, Eng J, Zhang N, Xj L, Aebersold R (2005) A uniform proteomics ms/ms analysis platform utilizing open xml file formats. Mol Syst Biol 1:2005.0017

    Article  PubMed  Google Scholar 

  • Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database—2009 update. Nucleic Acids Res 37(Database issue):D767–D772

    Article  PubMed  CAS  Google Scholar 

  • Koehler CJ, Arntzen MO, Strozynski M, Treumann A, Thiede B (2011) Isobaric peptide termini labeling utilizing site-specific N-terminal succinylation. Anal Chem 83(12):4775–4781

    Article  PubMed  CAS  Google Scholar 

  • Lau KW, Jones AR, Swainston N, Siepen JA, Hubbard SJ (2007) Capture and analysis of quantitative proteomic data. Proteomics 7(16):2787–2799

    Article  PubMed  CAS  Google Scholar 

  • Levin Y (2011) The role of statistical power analysis in quantitative proteomics. Proteomics 11(12):2565–2567

    Article  PubMed  CAS  Google Scholar 

  • Li XJ, Zhang H, Ranish JA, Aebersold R (2003) Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal Chem 75(23):6648–6657

    Article  PubMed  CAS  Google Scholar 

  • Li J, Rix U, Fang B, Bai Y, Edwards A, Colinge J, Bennett KL, Gao J, Song L, Eschrich S, Superti-Furga G, Koomen J, Haura EB (2010) A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat Chem Biol 6(4):291–299

    Article  PubMed  CAS  Google Scholar 

  • Lin WT, Hung WN, Yian YH, Wu KP, Han CL, Chen YR, Chen YJ, Sung TY, Hsu WL (2006) Multi-q: a fully automated tool for multiplexed protein quantitation. J Proteome Res 5(9):2328–2338

    Article  PubMed  CAS  Google Scholar 

  • Malik R, Dulla K, Nigg EA, Krner R (2010) From proteome lists to biological impact—tools and strategies for the analysis of large ms data sets. Proteomics 10(6):1270–1283

    Article  PubMed  CAS  Google Scholar 

  • Mallick P, Kuster B (2010) Proteomics: a pragmatic perspective. Nat Biotechnol 28(7):695–709

    Article  PubMed  CAS  Google Scholar 

  • Mason CJ, Therneau TM, Eckel-Passow JE, Johnson KL, Oberg AL, Olson JE, Nair KS, Muddiman DC, Bergen HR 3rd (2007) A method for automatically interpreting mass spectra of 18o-labeled isotopic clusters. Mol Cell Proteomics 6(2):305–318

    PubMed  CAS  Google Scholar 

  • Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, Garapati P, Hemish J, Hermjakob H, Jassal B, Kanapin A, Lewis S, Mahajan S, May B, Schmidt E, Vastrik I, Wu G, Birney E, Stein L, D’Eustachio P (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37(Database issue):D619–D622

    Article  PubMed  CAS  Google Scholar 

  • Matthiesen R, Carvalho AS (2010) Methods and algorithms for relative quantitative proteomics by mass spectrometry. Methods Mol Biol 593:187–204

    Article  PubMed  CAS  Google Scholar 

  • Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell MJ, Kitano H, Thomas PD (2005) The panther database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33(Database issue):D284–D288

    Article  PubMed  CAS  Google Scholar 

  • Mirgorodskaya OA, Kozmin YP, Titov MI, Krner R, Snksen CP, Roepstorff P (2000) Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)o-labeled internal standards. Rapid Commun Mass Spectrom 14(14):1226–1232

    Article  PubMed  CAS  Google Scholar 

  • Mortensen P, Gouw JW, Olsen JV, Ong SE, Rigbolt KTG, Bunkenborg J, Cox J, Foster LJ, Heck AJR, Blagoev B, Andersen JS, Mann M (2010) Msquant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res 9(1):393–403

    Article  PubMed  CAS  Google Scholar 

  • Müeller LN, Brusniak MY, Mani DR, Aebersold R (2008) An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 7(1):51–61

    Article  PubMed  Google Scholar 

  • Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11(4):535–553

    Article  PubMed  CAS  Google Scholar 

  • Nilse L, Sturm M, Trudgian D, Salek M, Sims P, Carroll K, Hubbard S (2010) Silacanalyzer—a tool for differential quantitation of stable isotope derived data. In: Masulli F, Peterson L, Tagliaferri R (eds) Computational intelligence methods for bioinformatics and biostatistics. Lecture notes in computer science, vol 6160. Springer, Heidelberg, pp 45–55

    Google Scholar 

  • Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA 96(12):6591–6596

    Article  PubMed  CAS  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, silac, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  PubMed  CAS  Google Scholar 

  • Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC (2009) itraq underestimation in simple and complex mixtures: ‘the good, the bad and the ugly”. J Proteome Res 8(11):5347–5355

    Article  PubMed  CAS  Google Scholar 

  • Pan C, Kumar C, Bohl S, Klingmueller U, Mann M (2009) Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 8(3):443–450

    Article  PubMed  CAS  Google Scholar 

  • Park SK, Venable JD, Xu T, Yates JR 3rd (2008) A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 5(4):319–322

    PubMed  CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Pichlmair A, Lassnig C, Eberle CA, Gorna MW, Baumann CL, Burkard TR, Buerckstümmer T, Stefanovic A, Krieger S, Bennett KL, Rülicke T, Weber F, Colinge J, Mueller M, Superti-Furga G (2011) Ifit1 is an antiviral protein that recognizes 5′′-triphosphate RNA. Nat Immunol 12(7):624–630

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0

    Google Scholar 

  • Ramos-Fernandez A, Lopez-Ferrer D, Vazquez J (2007) Improved method for differential expression proteomics using trypsin-catalyzed 18o labeling with a correction for labeling efficiency. Mol Cell Proteomics 6(7):1274–1286

    Article  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  PubMed  CAS  Google Scholar 

  • Savitski MM, Fischer F, Mathieson T, Sweetman G, Lang M, Bantscheff M (2010) Targeted data acquisition for improved reproducibility and robustness of proteomic mass spectrometry assays. J Am Soc Mass Spectrom 21(10):1668–1679

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5(1):4–15

    Article  PubMed  CAS  Google Scholar 

  • Schwacke JH, Hill EG, Krug EL, Comte-Walters S, Schey KL (2009) iquantitator: a tool for protein expression inference using itraq. BMC Bioinformatics 10:342

    Article  PubMed  Google Scholar 

  • Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, Nixon J, Van Auken K, Wang X, Shi X, Reguly T, Rust JM, Winter A, Dolinski K, Tyers M (2011) The biogrid interaction database: 2011 update. Nucleic Acids Res 39(Database issue):D698–D704

    Article  PubMed  Google Scholar 

  • Stemmann O, Zou H, Gerber SA, Gygi SP, Kirschner MW (2001) Dual inhibition of sister chromatid separation at metaphase. Cell 107(6):715–726

    Article  PubMed  CAS  Google Scholar 

  • Taylor CF, Paton NW, Lilley KS, Binz PA, Julian RK Jr, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJR, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates JR 3rd, Hermjakob H (2007) The minimum information about a proteomics experiment (miape). Nat Biotechnol 25(8):887–893

    Article  PubMed  CAS  Google Scholar 

  • Thompson A, Schfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AKA, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by ms/ms. Anal Chem 75(8):1895–1904

    Article  PubMed  CAS  Google Scholar 

  • Tsou CC, Tsui YH, Yian YH, Chen YJ, Yang HY, Yu CY, Lynn KS, Chen YJ, Sung TY, Hsu WL (2009) Maxic-q web: a fully automated web service using statistical and computational methods for protein quantitation based on stable isotope labeling and lc-ms. Nucleic Acids Res 37(Web Server issue):W661–W669

    Article  PubMed  CAS  Google Scholar 

  • Voet D, Voet JG (2010) Biochemistry, 4th edn. Wiley-VCH GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  • Wang Q, Chaerkady R, Wu J, Hwang HJ, Papadopoulos N, Kopelovich L, Maitra A, Matthaei H, Eshleman JR, Hruban RH, Kinzler KW, Pandey A, Vogelstein B (2011) Mutant proteins as cancer-specific biomarkers. Proc Natl Acad Sci USA 108(6):2444–2449

    Article  PubMed  CAS  Google Scholar 

  • Wu R, Dephoure N, Haas W, Huttlin EL, Zhai B, Sowa ME, Gygi SP (2011) Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes. Mol Cell Proteomics 10(8):M111.009,654

    Google Scholar 

  • Xiang F, Ye H, Chen R, Fu Q, Li L (2010) N,N-dimethyl leucines as novel isobaric tandem mass tags for quantitative proteomics and peptidomics. Anal Chem 82(7):2817–2825

    Article  PubMed  CAS  Google Scholar 

  • Yao X (2011) Derivatization or not: a choice in quantitative proteomics. Anal Chem 83(12):4427–4439

    Article  PubMed  CAS  Google Scholar 

  • Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Ficarro SB, Li S, Marto JA (2009) Optimized orbitrap hcd for quantitative analysis of phosphopeptides. J Am Soc Mass Spectrom 20(8):1425–1434

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wang Y, Li S (2010a) Deuterium isobaric amine-reactive tags for quantitative proteomics. Anal Chem 82(18):7588–7595

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Askenazi M, Jiang J, Luckey CJ, Griffin JD, Marto JA (2010b) A robust error model for itraq quantification reveals divergent signaling between oncogenic flt3 mutants in acute myeloid leukemia. Mol Cell Proteomics 9(5):780–790

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Colinge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Breitwieser, F.P., Colinge, J. (2012). Analysis of Labeled Quantitative Mass Spectrometry Proteomics Data. In: Trajanoski, Z. (eds) Computational Medicine. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0947-2_5

Download citation

Publish with us

Policies and ethics