Skip to main content

Nerve Driven Immunity: Noradrenaline and Adrenaline

  • Chapter
  • First Online:

Abstract

Noradrenaline and adrenaline belong to catecholamines, a family of chemical compounds containing a catechol or 3,4-dihydroxyphenyl group and an amine function. Together with dopamine, they are the most abundant and important catecholamines in the human body and are all produced from tyrosine, a non-essential amino acid which is both obtained from dietary proteins or in turn synthesized from the essential amino acid phenylalanine by the enzyme phenylalanine hydroxylase. Noradrenaline is synthesized from dopamine by dopamine β-hydroxylase and is converted to adrenaline by phenylethanolamine N-methyltransferase (Fig. 2.1). The natural stereoisomers are l-(-)-(R)-noradrenaline and adrenaline.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K (2010) Understanding wiring and volume transmission. Brain Res Rev 64:137–159

    PubMed  Google Scholar 

  • Amenta F, Bronzetti E, Cantalamessa F, El-Assouad D, Felici L, Ricci A, Tayebati SK (2001) Identification of dopamine plasma membrane and vesicular transporters in human peripheral blood lymphocytes. J Neuroimmunol 117:133–142

    PubMed  CAS  Google Scholar 

  • Andreassi JL 2nd, Eggleston WB, Stewart JK (1998) Phenylethanolamine N-methyltransferase mRNA in rat spleen and thymus. Neurosci Lett 241:75–78

    PubMed  CAS  Google Scholar 

  • Anstead MI, Hunt TA, Carlson SL, Burki NK (1998) Variability of peripheral blood lymphocyte beta-2-adrenergic receptor density in humans. Am J Respir Crit Care Med 157:990–992

    PubMed  CAS  Google Scholar 

  • Arias-Montaño JA, Berger VA, Soria-Jasso LE, Young JM (1999) Characterisation of alpha1B-adrenoceptors linked to inositol phosphate formation and calcium mobilisation in human astrocytoma U373 MG cells. Naunyn Schmiedebergs Arch Pharmacol 360:533–539

    PubMed  Google Scholar 

  • Arnason BG, Brown M, Maselli R, Karaszewski J, Reder A (1988) Blood lymphocyte beta-adrenergic receptors in multiple sclerosis. Ann N Y Acad Sci 540:585–588

    PubMed  CAS  Google Scholar 

  • Audus KL, Gordon MA (1982) Characteristics of tricyclic antidepressant binding sites associated with murine lymphocytes from spleen. J Immunopharmacol 4:1–12

    PubMed  CAS  Google Scholar 

  • Baerwald C, Graefe C, Muhl C, Von Wichert P, Krause A (1992a) Beta 2-adrenergic receptors on peripheral blood mononuclear cells in patients with rheumatic diseases. Eur J Clin Invest 22(Suppl 1):42–46

    PubMed  Google Scholar 

  • Baerwald C, Graefe C, von Wichert P, Krause A (1992b) Decreased density of beta-adrenergic receptors on peripheral blood mononuclear cells in patients with rheumatoid arthritis. J Rheumatol 19:204–210

    PubMed  CAS  Google Scholar 

  • Baerwald CG, Laufenberg M, Specht T, von Wichert P, Burmester GR, Krause A (1997) Impaired sympathetic influence on the immune response in patients with rheumatoid arthritis due to lymphocyte subset-specific modulation of beta 2-adrenergic receptors. Br J Rheumatol 36:1262–1269

    PubMed  CAS  Google Scholar 

  • Baerwald CG, Wahle M, Ulrichs T, Jonas D, von Bierbrauer A, von Wichert P, Burmester GR, Krause A (1999) Reduced catecholamine response of lymphocytes from patients with rheumatoid arthritis. Immunobiology 200:77–91

    PubMed  CAS  Google Scholar 

  • Baerwald CG, Burmester GR, Krause A (2000) Interactions of autonomic nervous, neuroendocrine, and immune systems in rheumatoid arthritis. Rheum Dis Clin North Am 26:841–857

    PubMed  CAS  Google Scholar 

  • Baker AJ, Fuller RW (1995) Loss of response to beta-adrenoceptor agonists during the maturation of human monocytes to macrophages in vitro. J Leukoc Biol 57:395–400

    PubMed  CAS  Google Scholar 

  • Balsa MD, Gómez N, Unzeta M (1989) Characterization of monoamine oxidase activity present in human granulocytes and lymphocytes. Biochim Biophys Acta 992:140–144

    PubMed  CAS  Google Scholar 

  • Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K (2011) Beta blockers and breast cancer mortality: a population- based study. J Clin Oncol 29:2635–2644

    PubMed  CAS  Google Scholar 

  • Bartik MM, Brooks WH, Roszman TL (1993) Modulation of T cell proliferation by stimulation of the beta-adrenergic receptor: lack of correlation between inhibition of T cell proliferation and cAMP accumulation. Cell Immunol 148:408–421

    PubMed  CAS  Google Scholar 

  • Bauman GP, Bartik MM, Brooks WH, Roszman TL (1994) Induction of cAMP-dependent protein kinase (PKA) activity in T cells after stimulation of the prostaglandin E2 or the beta-adrenergic receptors: relationship between PKA activity and inhibition of anti-CD3 monoclonal antibody-induced T cell proliferation. Cell Immunol 158:182–194

    PubMed  CAS  Google Scholar 

  • Bellinger DL, Lorton D, Felten SY, Felten DL (1992) Innervation of lymphoid organs and implications in development, aging, and autoimmunity. Int J Immunopharmacol 14:329–344

    PubMed  CAS  Google Scholar 

  • Bellinger DL, Millar BA, Perez S, Carter J, Wood C, ThyagaRajan S, Molinaro C, Lubahn C, Lorton D (2008) Sympathetic modulation of immunity: relevance to disease. Cell Immunol 252:27–56

    PubMed  CAS  Google Scholar 

  • Benarroch EE (2009) Autonomic-mediated immunomodulation and potential clinical relevance. Neurology 73:236–242

    PubMed  Google Scholar 

  • Ben-Eliyahu S, Shakhar G, Rosenne E, Levinson Y, Beilin B (1999) Hypothermia in barbiturate-anesthetized rats suppresses natural killer cell activity and compromises resistance to tumor metastasis: a role for adrenergic mechanisms. Anesthesiology 91:732–740

    PubMed  CAS  Google Scholar 

  • Ben-Eliyahu S, Shakhar G, Page GG, Stefanski V, Shakhar K (2000) Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and beta-adrenoceptors. Neuroimmunomodulation 8:154–164

    PubMed  CAS  Google Scholar 

  • Ben-Eliyahu S, Shakhar G, Page GG, Stefanski V, Shakhar K (2000a) Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and beta-adrenoceptors. Neuroimmunomodulation 8:154–164

    Google Scholar 

  • Benschop RJ, Nijkamp FP, Ballieux RE, Heijnen CJ (1994) The effects of beta-adrenoceptor stimulation on adhesion of human natural killer cells to cultured endothelium. Br J Pharmacol 113:1311–1316

    PubMed  CAS  Google Scholar 

  • Benschop RJ, Schedlowski M, Wienecke H, Jacobs R, Schmidt RE (1997) Adrenergic control of natural killer cell circulation and adhesion. Brain Behav Immun 11:321–332

    PubMed  CAS  Google Scholar 

  • Bergquist J, Silberring J (1998) Identification of catecholamines in the immune system by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 12:683–688

    PubMed  CAS  Google Scholar 

  • Bergquist J, Tarkowski A, Ekman R, Ewing A (1994) Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. Proc Natl Acad Sci USA 91:12912–12916

    PubMed  CAS  Google Scholar 

  • Bergquist J, Josefsson E, Tarkowski A, Ekman R, Ewing A (1997) Measurements of catecholamine-mediated apoptosis of immunocompetent cells by capillary electrophoresis. Electrophoresis 18:1760–1766

    PubMed  CAS  Google Scholar 

  • Berkeley MB, Daussin S, Hernandez MC, Bayer BM (1994) In vitro effects of cocaine, lidocaine and monoamine uptake inhibitors on lymphocyte proliferative responses. Immunopharmacol Immunotoxicol 16:165–178

    PubMed  CAS  Google Scholar 

  • Bidart JM, Assicot M, Bohuon C (1981) Catechol-O-methyl transferase activity in human mononuclear cells. Res Commun Chem Pathol Pharmacol 34:47–54

    PubMed  CAS  Google Scholar 

  • Bidart JM, Motte P, Assicot M, Bohuon C, Bellet D (1983) Catechol-O-methyltransferase activity and aminergic binding sites distribution in human peripheral blood lymphocyte subpopulations. Clin Immunol Immunopathol 26:1–9

    PubMed  CAS  Google Scholar 

  • Bishopric NH, Cohen HJ, Lefkowitz RJ (1980) Beta adrenergic receptors in lymphocyte subpopulations. J Allergy Clin Immunol 65:29–33

    PubMed  CAS  Google Scholar 

  • Blume J, Douglas SD, Evans DL (2011) Immune suppression and immune activation in depression. Brain Behav Immun 25:221–229

    PubMed  CAS  Google Scholar 

  • Borda ES, Tenenbaum A, Sales ME, Rumi L, Sterin-Borda L (1998) Role of arachidonic acid metabolites in the action of a beta adrenergic agonist on human monocyte phagocytosis. Prostaglandins Leukot Essent Fatty Acids 58:85–90

    PubMed  CAS  Google Scholar 

  • Boreus LO, Hjemdahl P, Lagercrantz H, Martinsson A, Yao AC (1986) Beta-adrenoceptor function in white blood cells from newborn infants: no relation to plasma catecholamine levels. Pediatr Res 20:1152–1155

    PubMed  CAS  Google Scholar 

  • Borger P, Hoekstra Y, Esselink MT, Postma DS, Zaagsma J, Vellenga E, Kauffman HF (1998) Beta-adrenoceptor-mediated inhibition of IFN-gamma, IL-3, and GM-CSF mRNA accumulation in activated human T lymphocytes is solely mediated by the beta2-adrenoceptor subtype. Am J Respir Cell Mol Biol 19:400–407

    PubMed  CAS  Google Scholar 

  • Botta F, Maestroni GJ (2008) Adrenergic modulation of dendritic cell cancer vaccine in a mouse model: role of dendritic cell maturation. J Immunother 31:263–270

    PubMed  CAS  Google Scholar 

  • Brenner GJ, Felten SY, Felten DL, Moynihan JA (1992) Sympathetic nervous system modulation of tumor metastases and host defense mechanisms. J Neuroimmunol 37:191–201

    PubMed  CAS  Google Scholar 

  • Brown SL, Charney DS, Woods SW, Heninger GL, Tallman J (1988) Lymphocyte beta-adrenergic receptor binding in panic disorder. Psychopharmacology (Berl) 94:24–28

    CAS  Google Scholar 

  • Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR Jr, Trendelenburg AU (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136

    PubMed  CAS  Google Scholar 

  • Bylund DB, Bond RA, Eikenburg DC, Hieble JP, Hills R, Minneman KP, Parra S (2011) Adrenoceptors. Last modified on 2011-02-10. Accessed on 2011-08-14. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=4

  • Capellino S, Cosentino M, Wolff C, Schmidt M, Grifka J, Straub RH (2010) Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target. Ann Rheum Dis 69:1853–1860

    PubMed  CAS  Google Scholar 

  • Carlson SL, Trauth K, Brooks WH, Roszman TL (1994) Enhancement of beta-adrenergic-induced cAMP accumulation in activated T-cells. J Cell Physiol 161:39–48

    PubMed  CAS  Google Scholar 

  • Chaitidis P, Billett EE, O’Donnell VB, Fajardo AB, Fitzgerald J, Kuban RJ, Ungethuem U, Kühn H (2004) Th2 response of human peripheral monocytes involves isoform-specific induction of monoamine oxidase-A. J Immunol 173:4821–4827

    PubMed  CAS  Google Scholar 

  • Chaitidis P, O’Donnell V, Kuban RJ, Bermudez-Fajardo A, Ungethuem U, Kühn H (2005) Gene expression alterations of human peripheral blood monocytes induced by medium-term treatment with the TH2-cytokines interleukin-4 and -13. Cytokine 30:366–377

    PubMed  CAS  Google Scholar 

  • Chakroborty D, Sarkar C, Basu B, Dasgupta PS, Basu S (2009) Catecholamines regulate tumor angiogenesis. Cancer Res 69:3727–3730

    PubMed  CAS  Google Scholar 

  • Chello M, Mastroroberto P, Romano R, Cirillo F, Marchese AR (1995) Improved beta-adrenergic receptor function after coronary artery bypass grafting in patients with congestive heart failure. Coron Artery Dis 6:957–963

    PubMed  CAS  Google Scholar 

  • Chelmicka-Schorr E, Arnason BG (1999) Interactions between the sympathetic nervous system and the immune system. Brain Behav Immun 13:271–278

    Google Scholar 

  • Chelmicka-Schorr E, Checinski M, Arnason BGW (1988) Chemical sympathectomy augments the severity of experimental allergic encephalomyelitis. J Neuroimmunol 17:347–350

    PubMed  CAS  Google Scholar 

  • Chou RC, Dong XL, Noble BK, Knight PR, Spengler RN (1998) Adrenergic regulation of macrophage-derived tumor necrosis factor-alpha generation during a chronic polyarthritis pain model. J Neuroimmunol 82:140–148

    PubMed  CAS  Google Scholar 

  • Cole SW, Korin YD, Fahey JL, Zack JA (1998) Norepinephrine accelerates HIV replication via protein kinase A-dependent effects on cytokine production. J Immunol 161:610–616

    PubMed  CAS  Google Scholar 

  • Comi C, Leone M, Bonissoni S, DeFranco S, Bottarel F, Mezzatesta C, Chiocchetti A, Perla F, Monaco F, Dianzani U (2000) Defective T cell Fas function in patients with multiple sclerosis. Neurology 55:921–927

    PubMed  CAS  Google Scholar 

  • Corradi L, Negri F, Parini A, Partesana N, Finardi G (1981) Decreased beta-adrenoceptors in polymorphonucleates in essential hypertension. Boll Soc Ital Biol Sper 57:1766–1770

    PubMed  CAS  Google Scholar 

  • Cosentino M, Marino F, Bombelli R, Ferrari M, Lecchini S, Frigo G (1999) Endogenous catecholamine synthesis, metabolism, storage and uptake in human neutrophils. Life Sci 64:975–981

    PubMed  CAS  Google Scholar 

  • Cosentino M, Bombelli R, Ferrari M, Marino F, Rasini E, Maestroni GJM, Conti A, Boveri M, Lecchini S, Frigo G (2000) HPLC-ED measurement of endogenous catecholamines in human immune cells and hematopoietic cell lines. Life Sci 68:283–295

    PubMed  CAS  Google Scholar 

  • Cosentino M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Frigo G (2002a) Stimulation with phytohaemagglutinin induces the synthesis of catecholamines in human peripheral blood mononuclear cells: role of protein kinase C and contribution of intracellular calcium. J Neuroimmunol 125:125–133

    PubMed  CAS  Google Scholar 

  • Cosentino M, Zaffaroni M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Ghezzi A, Frigo GM (2002b) Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: effect of cell stimulation and possible relevance for activation-induced apoptosis. J Neuroimmunol 133:233–240

    PubMed  CAS  Google Scholar 

  • Cosentino M, Marino F, Bombelli R, Ferrari M, Lecchini S, Frigo G (2003) Unravelling dopamine (and catecholamine) physiopharmacology in lymphocytes: open questions. Trends Immunol 24:581–582

    PubMed  CAS  Google Scholar 

  • Cosentino M, Zaffaroni M, Ferrari M, Marino F, Bombelli R, Rasini E, Frigo G, Ghezzi A, Comi G, Lecchini S (2005) Interferon-γ and interferon-β affect endogenous catecholamines in human peripheral blood mononuclear cells: implications for multiple sclerosis. J Neuroimmunol 162:112–121

    PubMed  CAS  Google Scholar 

  • Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642

    PubMed  CAS  Google Scholar 

  • Cotter TG, O’Malley K (1983) Decreased neutrophil cyclic AMP response to isoprenaline stimulation in the elderly. Clin Sci (Lond) 65:155–157

    CAS  Google Scholar 

  • Cremaschi GA, Miguel S, Cazaux C, Sterin-Borda L (1994) Increased proliferative activity, loss of beta-adrenergic receptor function and class I major histocompatibility complex antigen surface expression in a modified lymphoma cell line. Cell Signal 6:783–792

    PubMed  CAS  Google Scholar 

  • Cremaschi GA, Genaro AM, Cazaux CA, Anesini C, Wald M, Borda T, Sterin-Borda L (2000) Altered beta-adrenoceptor function associated to protein kinase C activation in hyperproliferative T lymphocytes. J Neuroimmunol 110:57–65

    PubMed  CAS  Google Scholar 

  • De Giorgi V, Grazzini M, Gandini S, Benemei S, Lotti T, Marchionni N, Geppetti P (2011) Treatment with β-blockers and reduced disease progression in patients with thick melanoma. Arch Intern Med 171:779–781

    PubMed  Google Scholar 

  • De Keyser J, Wilczak N, Leta R, Streetland C (1999) Astrocytes in multiple sclerosis lack beta-2 adrenergic receptors. Neurology 53:1628–1633

    PubMed  Google Scholar 

  • De Keyser J, Zeinstra E, Frohman E (2003) Are astrocytes central players in the pathophysiology of multiple sclerosis? Arch Neurol 60:132–136

    PubMed  Google Scholar 

  • De Keyser J, Zeinstra E, Wilczak N (2004) Astrocytic beta2-adrenergic receptors and multiple sclerosis. Neurobiol Dis 15:331–339

    PubMed  Google Scholar 

  • De Keyser J, Steen C, Mostert JP, Koch MW (2008) Hypoperfusion of the cerebral white matter in multiple sclerosis: possible mechanisms and pathophysiological significance. J Cereb Blood Flow Metab 28:1645–1651

    PubMed  Google Scholar 

  • De Keyser J, Laureys G, Demol F, Wilczak N, Mostert J, Clinckers R (2010) Astrocytes as potential targets to suppress inflammatory demyelinating lesions in multiple sclerosis. Neurochem Int 57:446–450

    PubMed  Google Scholar 

  • del Rey A, Besedovsky HO (2008) Sympathetic nervous system-immune interactions in autoimmune lymphoproliferative diseases. Neuroimmunomodulation 15:29–36

    PubMed  Google Scholar 

  • Dzimiri N, Moorji A (1996) Relationship between alterations in lymphocyte and myocardial beta-adrenoceptor density in patients with left heart valvular disease. Clin Exp Pharmacol Physiol 23:498–502

    PubMed  CAS  Google Scholar 

  • Dzimiri N, Hussain S, Moorji A, Prabhakar G, Bakr S, Kumar M, Almotrefi AA, Halees Z (1995) Characterization of lymphocyte beta-adrenoceptor activity and Gs-protein in patients with rheumatic heart valvular disease. Fundam Clin Pharmacol 9:372–380

    PubMed  CAS  Google Scholar 

  • Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595–638

    PubMed  CAS  Google Scholar 

  • Elliott L, Brooks W, Roszman T (1992) Inhibition of anti-CD3 monoclonal antibody-induced T-cell proliferation by dexamethasone, isoproterenol, or prostaglandin E2 either alone or in combination. Cell Mol Neurobiol 12:411–427

    PubMed  CAS  Google Scholar 

  • Ezeamuzie CI, Shihab PK, Al-Radwan R (2011) Loss of surface beta-2 adrenoceptors accounts for the insensitivity of cultured human monocytes to beta-2 adrenoceptor agonists. Int Immunopharmacol 11:1189–1194

    PubMed  CAS  Google Scholar 

  • Feldman RD, Hunninghake GW, McArdle WL (1987) Beta-adrenergic-receptor-mediated suppression of interleukin 2 receptors in human lymphocytes. J Immunol 139:3355–3359

    PubMed  CAS  Google Scholar 

  • Feldman RS, Meyer JS, Quenzer LF (1997) Catecholamines. In: Principles of neuropsychopharmacology. Sinauer, Sunderland, pp. 277–344

    Google Scholar 

  • Felten DL (1991) Neurotransmitter signaling of cells of the immune system: important progress, major gaps. Brain Behav Immun 5:2–8

    PubMed  CAS  Google Scholar 

  • Felten DL, Felten SY (1988) Sympathetic noradrenergic innervation of immune organs. Brain Behav Immun 2:293–300

    PubMed  CAS  Google Scholar 

  • Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S (1985) Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol 135(2 Suppl):755s–765s

    PubMed  CAS  Google Scholar 

  • Ferrari M, Cosentino M, Marino F, Bombelli R, Rasini E, Lecchini S, Frigo G (2004) Dopaminergic D1-like receptor-dependent inhibition of tyrosine hydroxylase mRNA expression and catecholamine production in human lymphocytes. Biochem Pharmacol 67:865–873

    PubMed  CAS  Google Scholar 

  • Flierl MA, Rittirsch D, Nadeau BA, Chen AJ, Sarma JV, Zetoune FS, McGuire SR, List RP, Day DE, Hoesel LM, Gao H, Van Rooijen N, Huber-Lang MS, Neubig RR, Ward PA (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449:721–725

    PubMed  CAS  Google Scholar 

  • Flierl MA, Rittirsch D, Huber-Lang M, Sarma JV, Ward PA (2008) Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening pandora’s box? Mol Med 14:195–204

    PubMed  CAS  Google Scholar 

  • Flierl MA, Rittirsch D, Nadeau BA, Sarma JV, Day DE, Lentsch AB, Huber-Lang MS, Ward PA (2009) Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS One 4:e4414

    PubMed  Google Scholar 

  • Fragala MS, Kraemer WJ, Mastro AM, Denegar CR, Volek JS, Häkkinen K, Anderson JM, Lee E, Maresh CM (2011) Leukocyte β2-adrenergic receptor expression in response to resistance exercise. Med Sci Sports Exerc 43:1422–1432

    PubMed  CAS  Google Scholar 

  • Freeman JG, Ryan JJ, Shelburne CP, Bailey DP, Bouton LA, Narasimhachari N, Domen J, Simeon N, Couderc F, Stewart JK (2001) Catecholamines in murine bone marrow derived mast cells. J Neuroimmunol 119:231–238

    PubMed  CAS  Google Scholar 

  • Freier E, Weber CS, Nowottne U, Horn C, Bartels K, Meyer S, Hildebrandt Y, Luetkens T, Cao Y, Pabst C, Muzzulini J, Schnee B, Brunner-Weinzierl MC, Marangolo M, Bokemeyer C, Deter HC, Atanackovic D (2010) Decrease of CD4(+)FOXP3(+) T regulatory cells in the peripheral blood of human subjects undergoing a mental stressor. Psychoneuroendocrinology 35:663–673

    PubMed  CAS  Google Scholar 

  • Friedman EM, Irwin MR (1997) Modulation of immune cell function by the autonomic nervous system. Pharmacol Ther 74:27–38

    PubMed  CAS  Google Scholar 

  • Frohman EM, Monson NL, Lovett-Racke AE, Racke MK (2001) Autonomic regulation of neuroimmunological responses: implications for multiple sclerosis. J Clin Immunol 21:61–73

    PubMed  CAS  Google Scholar 

  • Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis – the plaque and its pathogenesis. N Engl J Med 354:942–955

    PubMed  CAS  Google Scholar 

  • Garlind A, Johnston JA, Algotsson A, Winblad B, Cowburn RF (1997) Decreased beta-adrenoceptor-stimulated adenylyl cyclase activity in lymphocytes from Alzheimer’s disease patients. Neurosci Lett 226:37–40

    PubMed  CAS  Google Scholar 

  • Ghorpade A, Gendelman HE, Kipnis J (2008) Macrophages, microglia and dendritic cells. In: Ikezu T, Gendelman HE (eds) Neuroimmune pharmacology. Springer, New York

    Google Scholar 

  • Gietzen DW, Fregeau D, Goodman T, Weiler PG, Graf K, Magliozzi J (1989) Lymphocyte beta-adrenoceptor/effector complex in aging and dementia of the Alzheimer type. Alzheimer Dis Assoc Disord 3:132–142

    PubMed  CAS  Google Scholar 

  • Giorelli M, Livrea P, Trojano M (2004) Post-receptorial mechanisms underlie functional dysregulation of beta2-adrenergic receptors in lymphocytes from multiple sclerosis patients. J Neuroimmunol 155:143–149

    PubMed  CAS  Google Scholar 

  • Giubilei F, Calderaro C, Antonini G, Sepe-Monti M, Tisei P, Brunetti E, Marchione F, Caronti B, Pontieri FE (2004) Increased lymphocyte dopamine beta-hydroxylase immunoreactivity in Alzheimer’s disease: compensatory response to cholinergic deficit? Dement Geriatr Cogn Disord 18:338–341

    PubMed  CAS  Google Scholar 

  • Goin JC, Sterin-Borda L, Borda ES, Finiasz M, Fernández J, de Bracco MM (1991) Active alpha 2 and beta adrenoceptors in lymphocytes from patients with chronic lymphocytic leukemia. Int J Cancer 49:178–181

    PubMed  CAS  Google Scholar 

  • Goldfarb Y, Benish M, Rosenne E, Melamed R, Levi B, Glasner A, Ben-Eliyahu S (2009) CpG-C oligodeoxynucleotides limit the deleterious effects of beta-adrenoceptor stimulation on NK cytotoxicity and metastatic dissemination. J Immunother 32:280–291

    PubMed  CAS  Google Scholar 

  • Goldfarb Y, Sorski L, Benish M, Levi B, Melamed R, Ben-Eliyahu S (2011) Improving postoperative immune status and resistance to cancer metastasis: a combined perioperative approach of immunostimulation and prevention of excessive surgical stress responses. Ann Surg 253:798–810

    PubMed  Google Scholar 

  • Goyarts E, Matsui M, Mammone T, Bender AM, Wagner JA, Maes D, Granstein RD (2008) Norepinephrine modulates human dendritic cell activation by altering cytokine release. Exp Dermatol 17:188–196

    PubMed  CAS  Google Scholar 

  • Green SA, Cole G, Jacinto M, Innis M, Liggett SB (1993) A polymorphism of the human beta2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem 268:23116–23121

    PubMed  CAS  Google Scholar 

  • Green SA, Turki J, Bejarano P, Hall IP, Liggett SB (1995) Influence of beta2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am J Respir Cell Mol Biol 13:22–33

    Google Scholar 

  • Grisanti LA, Evanson J, Marchus E, Jorissen H, Woster AP, DeKrey W, Sauter ER, Combs CK, Porter JE (2010) Pro-inflammatory responses in human monocytes are beta1-adrenergic receptor subtype dependent. Mol Immunol 47:1244–1254

    PubMed  CAS  Google Scholar 

  • Grisanti LA, Woster AP, Dahlman J, Sauter ER, Combs CK, Porter JE (2011) {alpha}1-adrenergic receptors positively regulate toll-like receptor cytokine production from human monocytes and macrophages. J Pharmacol Exp Ther 338:648–657

    PubMed  CAS  Google Scholar 

  • Guirao X, Kumar A, Katz J, Smith M, Lin E, Keogh C, Calvano SE, Lowry SF (1997) Catecholamines increase monocyte TNF receptors and inhibit TNF through beta 2-adrenoreceptor activation. Am J Physiol 273:E1203–E1208

    PubMed  CAS  Google Scholar 

  • Gurguis GN, Andrews R, Antai-Otong D, Vo SP, Blakeley JE, Orsulak PJ, Rush AJ (1999a) Neutrophil beta2-adrenergic receptor coupling efficiency to Gs protein in subjects with post-traumatic stress disorder and normal controls. Psychopharmacology (Berl) 143:131–140

    CAS  Google Scholar 

  • Gurguis GN, Vo SP, Griffith JM, Rush AJ (1999b) Neutrophil beta(2)-adrenoceptor function in major depression: G(s) coupling, effects of imipramine and relationship to treatment outcome. Eur J Pharmacol 386:135–144

    PubMed  CAS  Google Scholar 

  • Hanania NA, Moore RH (2004) Anti-inflammatory activities of beta2-agonists. Curr Drug Targets Inflamm Allergy 3:271–277

    PubMed  CAS  Google Scholar 

  • Hataoka I, Okayama M, Sugi M, Inoue H, Takishima T, Shirato K (1993) Decrease in beta-adrenergic receptors of lymphocytes in spontaneously occurring acute asthma. Chest 104:508–514

    PubMed  CAS  Google Scholar 

  • Heijink IH, Vellenga E, Borger P, Postma DS, Monchy JG, Kauffman HF (2003) Polarized Th1 and Th2 cells are less responsive to negative feedback by receptors coupled to the AC/cAMP system compared to freshly isolated T cells. Br J Pharmacol 138:1441–1450

    PubMed  CAS  Google Scholar 

  • Heijnen CJ, Rouppe van der Voort C, Wulffraat N, van der Net J, Kuis W, Kavelaars A (1996) Functional alpha 1-adrenergic receptors on leukocytes of patients with polyarticular juvenile rheumatoid arthritis. J Neuroimmunol 71:223–226

    PubMed  CAS  Google Scholar 

  • Heijnen CJ, Rouppe van der Voort C, van de Pol M, Kavelaars A (2002) Cytokines regulate alpha(1)-adrenergic receptor mRNA expression in human monocytic cells and endothelial cells. J Neuroimmunol 125:66–72

    PubMed  CAS  Google Scholar 

  • Hellstrand K, Hermodsson S, Strannegård O (1985) Evidence for a beta-adrenoceptor-mediated regulation of human natural killer cells. J Immunol 134(6):4095–4099

    PubMed  CAS  Google Scholar 

  • Henry JP, Botton D, Sagne C, Isambert MF, Desnos C, Blanchard V, Raisman-Vozari R, Krejci E, Massoulie J, Gasnier B (1994) Biochemistry and molecular biology of the vesicular monoamine transporter from chromaffin granules. J Exp Biol 196:251–262

    PubMed  CAS  Google Scholar 

  • Hertz L, Chen Y, Gibbs ME, Zang P, Peng L (2004) Astrocytic adrenoceptors: a major drug target in neurological and psychiatric disorders? Curr Drug Targets CNS Neurol Disord 3:239–267

    PubMed  CAS  Google Scholar 

  • Hertz L, Lovatt D, Goldman SA, Nedergaard M (2010) Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca(2+)]i. Neurochem Int 57:411–420

    PubMed  CAS  Google Scholar 

  • Inbar S, Neeman E, Avraham R, Benish M, Rosenne E, Ben-Eliyahu S (2011) Do stress responses promote leukemia progression? An animal study suggesting a role for epinephrine and prostaglandin-E2 through reduced NK activity. PLoS One 6:e19246

    PubMed  CAS  Google Scholar 

  • Irwin M (1994) Stress-induced immune suppression: role of brain corticotropin releasing hormone and autonomic nervous system mechanisms. Adv Neuroimmunol 4:29–47

    PubMed  CAS  Google Scholar 

  • Izeboud CA, Mocking JA, Monshouwer M, van Miert AS, Witkamp RF (1999) Participation of beta-adrenergic receptors on macrophages in modulation of LPS-induced cytokine release. J Recept Signal Transduct Res 19:191–202

    PubMed  CAS  Google Scholar 

  • Jana M, Dasgupta S, Ghorpade A, Pahan K (2008) Astrocytes, oligodendrocytes, and Schwann cells. In: Ikezu T, Gendelman HE (eds) Neuroimmune pharmacology. Springer, New York

    Google Scholar 

  • Jetschmann JU, Benschop RJ, Jacobs R, Kemper A, Oberbeck R, Schmidt RE, Schedlowski M (1997) Expression and in-vivo modulation of alpha- and beta-adrenoceptors on human natural killer (CD16+) cells. J Neuroimmunol 74:159–164

    PubMed  CAS  Google Scholar 

  • Jiang H, Jiang Q, Liu W, Feng J (2006) Parkin suppresses the expression of monoamine oxidases. J Biol Chem 281:8591–8599

    PubMed  CAS  Google Scholar 

  • Jiang JL, Peng YP, Qiu YH, Wang JJ (2007) Effect of endogenous catecholamines on apoptosis of Con A-activated lymphocytes of rats. J Neuroimmunol 192:79–88

    PubMed  CAS  Google Scholar 

  • Jiang JL, Peng YP, Qiu YH, Wang JJ (2009) Adrenoreceptor-coupled signal-transduction mechanisms mediating lymphocyte apoptosis induced by endogenous catecholamines. J Neuroimmunol 213:100–111

    PubMed  CAS  Google Scholar 

  • Josefsson E, Bergquist J, Ekman R, Tarkowski A (1996) Catecholamines are synthesized by mouse lymphocytes and regulate function of these cells by induction of apoptosis. Immunology 88:140–146

    PubMed  CAS  Google Scholar 

  • Kalinichenko VV, Mokyr MB, Graf LH Jr, Cohen RL, Chambers DA (1999) Norepinephrine-mediated inhibition of antitumor cytotoxic T lymphocyte generation involves a beta-adrenergic receptor mechanism and decreased TNF-alpha gene expression. J Immunol 163:2492–2499

    PubMed  CAS  Google Scholar 

  • Kálmán J, Kitajka K, Pákáski M, Zvara A, Juhász A, Vincze G, Janka Z, Puskás LG (2005) Gene expression profile analysis of lymphocytes from Alzheimer’s patients. Psychiatr Genet 15:1–6

    PubMed  Google Scholar 

  • Kamp T, Liebl B, Haen E, Emmerich B, Hallek M (1997) Defects of beta 2-adrenergic signal transduction in chronic lymphocytic leukaemia: relationship to disease progression. Eur J Clin Invest 27:121–127

    PubMed  CAS  Google Scholar 

  • Karaszewski JW, Reder AT, Maselli R, Brown M, Arnason BG (1990) Sympathetic skin responses are decreased and lymphocyte beta-adrenergic receptors are increased in progressive multiple sclerosis. Ann Neurol 27:366–372

    PubMed  CAS  Google Scholar 

  • Karaszewski JW, Reder AT, Anlar B, Kim WC, Arnason BG (1991) Increased lymphocyte beta-adrenergic receptor density in progressive multiple sclerosis is specific for the CD8+, CD28- suppressor cell. Ann Neurol 30:42–47

    PubMed  CAS  Google Scholar 

  • Karaszewski JW, Reder AT, Anlar B, Arnason GW (1993) Increased high affinity beta-adrenergic receptor densities and cyclic AMP responses of CD8 cells in multiple sclerosis. J Neuroimmunol 43:1–7

    PubMed  CAS  Google Scholar 

  • Kasprowicz DJ, Kohm AP, Berton MT, Chruscinski AJ, Sharpe A, Sanders VM (2000) Stimulation of the B cell receptor, CD86 (B7-2), and the beta 2-adrenergic receptor intrinsically modulates the level of IgG1 and IgE produced per B cell. J Immunol 165:680–690

    PubMed  CAS  Google Scholar 

  • Kavelaars A (2002) Regulated expression of α-1 adrenergic receptors in the immune system. Brain Behav Immun 16:799–807

    PubMed  CAS  Google Scholar 

  • Kavelaars A, van de Pol M, Zijlstra J, Heijnen CJ (1997) Beta 2-adrenergic activation enhances interleukin-8 production by human monocytes. J Neuroimmunol 77:211–216

    PubMed  CAS  Google Scholar 

  • Khan MM, Sansoni P, Silverman ED, Engleman EG, Melmon KL (1986) Beta-adrenergic receptors on human suppressor, helper, and cytolytic lymphocytes. Biochem Pharmacol 35:1137–1142

    PubMed  CAS  Google Scholar 

  • Kin NW, Sanders VM (2006) It takes nerve to tell T and B cells what to do. J Leukoc Biol 79:1093–1104

    PubMed  CAS  Google Scholar 

  • Knudsen JH, Christensen NJ, Bratholm P (1996) Lymphocyte norepinephrine and epinephrine, but not plasma catecholamines predict lymphocyte cAMP production. Life Sci 59:639–647

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Jeschke MG, Asai A, Kogiso M, Yoshida S, Herndon DN, Suzuki F (2011) Propranolol as a modulator of M2b monocytes in severely burned patients. J Leukoc Biol 89:797–803

    PubMed  CAS  Google Scholar 

  • Kohm AP, Sanders VM (1999) Suppression of antigen-specific Th2 cell-dependent IgM and IgG1 production following norepinephrine depletion in vivo. J Immunol 162:5299–5308

    PubMed  CAS  Google Scholar 

  • Kohm AP, Sanders VM (2000) Norepinephrine: a messenger from the brain to the immune system. Immunol Today 21:539–542

    PubMed  CAS  Google Scholar 

  • Kohm AP, Sanders VM (2001) Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev 53:487–525

    PubMed  CAS  Google Scholar 

  • Kong Y, Ruan L, Qian L, Liu X, Le Y (2010) Norepinephrine promotes microglia to uptake and degrade amyloid beta peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J Neurosci 30:11848–11857

    PubMed  CAS  Google Scholar 

  • Koopman FA, Stoof SP, Straub RH, Van Maanen MA, Vervoordeldonk MJ, Tak PP (2011) Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med. doi:10.2119/molmed.2011.00065. [Epub ahead of print]

  • Korichneva IL, Tkachuk VA (1990) Alterations in beta-adrenoceptor density on T-lymphocytes upon activation with interleukin-2 and phytohaemagglutinin. Biomed Sci 1:84–88

    PubMed  CAS  Google Scholar 

  • Krause A, Henrich A, Beckh KH, Von Wichert P, Baerwald C (1992) Correlation between density of beta 2-adrenergic receptors on peripheral blood mononuclear cells and serum levels of soluble interleukin-2 receptors in patients with chronic inflammatory diseases. Eur J Clin Invest 22(Suppl 1):47–51

    PubMed  Google Scholar 

  • Kuis W, de Jong-de Vos van Steenwijk C, Sinnema G, Kavelaars A, Prakken B, Helders PJ, Heijnen CJ (1996) The autonomic nervous system and the immune system in juvenile rheumatoid arthritis. Brain Behav Immun 10:387–398

    PubMed  CAS  Google Scholar 

  • Landmann RM, Bürgisser E, Wesp M, Bühler FR (1984) Beta-adrenergic receptors are different in subpopulations of human circulating lymphocytes. J Recept Res 4:37–50

    PubMed  CAS  Google Scholar 

  • Lappin D, Whaley K (1982) Adrenergic receptors on monocytes modulate complement component synthesis. Clin Exp Immunol 47:606–612

    PubMed  CAS  Google Scholar 

  • Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R, Smolders I, Michotte Y, De Keyser J (2010) Astrocytic beta(2)-adrenergic receptors: from physiology to pathology. Prog Neurobiol 91:189–199

    PubMed  CAS  Google Scholar 

  • Leader WG, Wolf KM, Cooper TM, Chandler MH (1994) Symptomatology, pulmonary function and response, and T lymphocyte beta 2-receptors during smoking cessation in patients with chronic obstructive pulmonary disease. Pharmacotherapy 14:162–172

    PubMed  CAS  Google Scholar 

  • Leosco D, Fortunato F, Rengo G, Iaccarino G, Sanzari E, Golino L, Zincarelli C, Canonico V, Marchese M, Koch WJ, Rengo F (2007) Lymphocyte G-protein-coupled receptor kinase-2 is upregulated in patients with Alzheimer’s disease. Neurosci Lett 415:279–282

    PubMed  CAS  Google Scholar 

  • Leposavić G, Pilipović I, Radojević K, Pesić V, Perisić M, Kosec D (2008) Catecholamines as immunomodulators: a role for adrenoceptor-mediated mechanisms in fine tuning of T-cell development. Auton Neurosci 144:1–12

    PubMed  Google Scholar 

  • Levi G, Patrizio M, Bernardo A, Petrucci TC, Agresti C (1993) Human immunodeficiency virus coat protein gp120 inhibits the beta-adrenergic regulation of astroglial and microglial functions. Proc Natl Acad Sci USA 90:1541–1545

    PubMed  CAS  Google Scholar 

  • Levite M (2001) Nervous immunity: neurotransmitters, extracellular K+ and T-cell function. Trends Immunol 22:2–5

    PubMed  CAS  Google Scholar 

  • Li CY, Chou TC, Lee CH, Tsai CS, Loh SH, Wong CS (2003) Adrenaline inhibits lipopolysaccharide-induced macrophage inflammatory protein-1 alpha in human monocytes: the role of beta-adrenergic receptors. Anesth Analg 96:518–523

    PubMed  CAS  Google Scholar 

  • Liggett SB (2000) The pharmacogenetics of beta2-adrenergic receptors: relevance to asthma. J Allergy Clin Immunol 105:S487–S492

    PubMed  CAS  Google Scholar 

  • Linden M (1992) The effects of beta 2-adrenoceptor agonists and a corticosteroid, budesonide, on the secretion of inflammatory mediators from monocytes. Br J Pharmacol 107:156–160

    PubMed  CAS  Google Scholar 

  • Lombardi MS, Kavelaars A, Schedlowski M, Bijlsma JW, Okihara KL, Van de Pol M, Ochsmann S, Pawlak C, Schmidt RE, Heijnen CJ (1999) Decreased expression and activity of G-protein-coupled receptor kinases in peripheral blood mononuclear cells of patients with rheumatoid arthritis. FASEB J 13:715–725

    PubMed  CAS  Google Scholar 

  • Lorton D, Lubahn C, Bellinger DL (2003) Potential use of drugs that target neural-immune pathways in the treatment of rheumatoid arthritis and other autoimmune diseases. Curr Drug Targets Inflamm Allergy 2:1–30

    PubMed  CAS  Google Scholar 

  • Macchi B, Matteucci C, Nocentini U, Caltagirone C, Mastino A (1999) Impaired apoptosis in mitogen-stimulated lymphocytes of patients with multiple sclerosis. NeuroReport 10:399–402

    PubMed  CAS  Google Scholar 

  • Madden KS, Sanders VM, Felten DL (1995) Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu Rev Pharmacol Toxicol 35:417–448

    PubMed  CAS  Google Scholar 

  • Madden KS, Rajan S, Bellinger DL, Felten SY, Felten DL (1997) Age-associated alterations in sympathetic neural interactions with the immune system. Dev Comp Immunol 21:479–486

    PubMed  CAS  Google Scholar 

  • Madden KS, Thyagarajan S, Felten DL (1998) Alterations in sympathetic noradrenergic innervation in lymphoid organs with age. Ann N Y Acad Sci 840:262–268

    PubMed  CAS  Google Scholar 

  • Maes M, Lin A, Kenis G, Egyed B, Bosmans E (2000) The effects of noradrenaline and alpha-2 adrenoceptor agents on the production of monocytic products. Psychiatry Res 96:245–253

    PubMed  CAS  Google Scholar 

  • Maestroni GJ (2004) Modulation of skin norepinephrine turnover by allergen sensitization: impact on contact hypersensitivity and T helper priming. J Inverst Dermatol 122:119–124

    CAS  Google Scholar 

  • Maestroni GJ (2005) Adrenergic modulation of dendritic cells function: relevance for the immune homeostasis. Curr Neurovasc Res 2:169–173

    PubMed  Google Scholar 

  • Maestroni GJ (2006) Sympathetic nervous system influence on the innate immune response. Ann N Y Acad Sci 1069:195–207

    PubMed  Google Scholar 

  • Maisel AS, Harris T, Rearden CA, Michel MC (1990) Beta-adrenergic receptors in lymphocyte subsets after exercise. Alterations in normal individuals and patients with congestive heart failure. Circulation 82:2003–2010

    PubMed  CAS  Google Scholar 

  • Makhlouf K, Weiner HL, Khoury SJ (2002) Potential of beta2-adrenoceptor agonists as add-on therapy for multiple sclerosis: focus on salbutamol (albuterol). CNS Drugs 16:1–8

    PubMed  CAS  Google Scholar 

  • Malec PH, Zeman K, Markiewicz K, Tchórzewski H (1990) Chronic beta-adrenergic antagonist treatment affects human T lymphocyte responsiveness “in vitro”. Allergol Immunopathol (Madr) 18:83–85

    CAS  Google Scholar 

  • Malfait AM, Malik AS, Marinova-Mutafchieva L, Butler DM, Maini RN, Feldmann M (1999) The beta2-adrenergic agonist salbutamol is a potent suppressor of established collagen-induced arthritis: mechanisms of action. J Immunol 162:6278–6283

    PubMed  CAS  Google Scholar 

  • Mallet J (1996) The TiPS/TINS Lecture. Catecholamines: from gene regulation to neuropsychiatric disorders. Trends Neurosci 19:191–196

    PubMed  CAS  Google Scholar 

  • Malysheva O, Pierer M, Wagner U, Wahle M, Wagner U, Baerwald CG (2008) Association between beta2 adrenergic receptor polymorphisms and rheumatoid arthritis in conjunction with human leukocyte antigen (HLA)-DRB1 shared epitope. Ann Rheum Dis 67:1759–1764

    PubMed  CAS  Google Scholar 

  • Mamani-Matsuda M, Moynet D, Molimard M, Ferry-Dumazet H, Marit G, Reiffers J, Mossalayi MD (2004) Long-acting beta2-adrenergic formoterol and salmeterol induce the apoptosis of B-chronic lymphocytic leukaemia cells. Br J Haematol 124:141–150

    PubMed  CAS  Google Scholar 

  • Mandela P, Ordway GA (2006) The norepinephrine transporter and its regulation. J Neurochem 97:310–333

    PubMed  CAS  Google Scholar 

  • Mangge H, Pietsch B, Lindner W, Warnkross H, Leb G, Schauenstein K (1993) Enhancing in vivo effect of propranolol on human lymphocyte function is not due to stereospecific beta-adrenergic blockade. Agents Actions 38:281–285

    PubMed  CAS  Google Scholar 

  • Mann JJ, Mahler JC, Wilner PJ, Halper JP, Brown RP, Johnson KS, Kocsis JH, Chen JS (1990) Normalization of blunted lymphocyte beta-adrenergic responsivity in melancholic inpatients by a course of electroconvulsive therapy. Arch Gen Psychiatry 47:461–464

    PubMed  CAS  Google Scholar 

  • Manni M, Maestroni GJ (2008) Sympathetic nervous modulation of the skin innate and adaptive immune response to peptidoglycan but not lipopolysaccharide: involvement of beta-adrenoceptors and relevance in inflammatory diseases. Brain Behav Immun 22:80–88

    PubMed  CAS  Google Scholar 

  • Manni M, Granstein RD, Maestroni G (2011) β2-Adrenergic agonists bias TLR-2 and NOD2 activated dendritic cells towards inducing an IL-17 immune response. Cytokine 55:380–386

    PubMed  CAS  Google Scholar 

  • Manning CD, McLaughlin MM, Livi GP, Cieslinski LB, Torphy TJ, Barnette MS (1996) Prolonged beta adrenoceptor stimulation up-regulates cAMP phosphodiesterase activity in human monocytes by increasing mRNA and protein for phosphodiesterases 4A and 4B. J Pharmacol Exp Ther 276:810–818

    PubMed  CAS  Google Scholar 

  • Mantyh PW, Rogers SD, Allen CJ, Catton MD, Ghilardi JR, Levin LA, Maggio JE, Vigna SR (1995) Beta 2-adrenergic receptors are expressed by glia in vivo in the normal and injured central nervous system in the rat, rabbit, and human. J Neurosci 15:152–164

    PubMed  CAS  Google Scholar 

  • Marazziti D, Consoli G, Masala I, Catena Dell’Osso M, Baroni S (2010) Latest advancements on serotonin and dopamine transporters in lymphocytes. Mini Rev Med Chem 10:32–40

    PubMed  CAS  Google Scholar 

  • Marino F, Cosentino M, Bombelli R, Ferrari M, Lecchini S, Frigo G (1999) Endogenous catecholamine synthesis, metabolism storage, and uptake in human peripheral blood mononuclear cells. Exp Hematol 27:489–495

    PubMed  CAS  Google Scholar 

  • Markus T, Hansson SR, Cronberg T, Cilio C, Wieloch T, Ley D (2010) β-Adrenoceptor activation depresses brain inflammation and is neuroprotective in lipopolysaccharide-induced sensitization to oxygen-glucose deprivation in organotypic hippocampal slices. J Neuroinflammation 7:94

    PubMed  CAS  Google Scholar 

  • Marshall GD (2004) Neuroendocrine mechanisms of immune dysregulation: applications to allergy and asthma. Ann Allergy Asthma Immunol 93(2 Suppl 1):S11–S17

    PubMed  Google Scholar 

  • Marshall GD Jr, Agarwal SK (2000) Stress, immune regulation, and immunity: applications for asthma. Allergy Asthma Proc 21:241–246

    PubMed  Google Scholar 

  • McNamee EN, Ryan KM, Kilroy D, Connor TJ (2010) Noradrenaline induces IL-1ra and IL-1 type II receptor expression in primary glial cells and protects against IL-1beta-induced neurotoxicity. Eur J Pharmacol 626:219–228

    PubMed  CAS  Google Scholar 

  • Melmon KL, Bourne HR, Weinstein Y, Shearer GM, Kram J, Bauminger S (1974) Hemolytic plaque formation by leukocytes in vitro. Control by vasoactive hormones. J Clin Invest 53:13–21

    PubMed  CAS  Google Scholar 

  • Mencia-Huerta JM, Paul-Eugène N, Dugas B, Petit-Frère C, Gordon J, Lagente V, Cairns J, Braquet P (1991) Beta-2-adrenoceptor agonists up-regulate the in vitro Fc epsilon receptor II/CD23 expression on, and release from, the promonocytic cell line U937 and human blood monocytes. Int Arch Allergy Appl Immunol 94:91–92

    PubMed  CAS  Google Scholar 

  • Mignini F, Tomassoni D, Traini E, Amenta F (2009) Dopamine, vesicular transporters and dopamine receptor expression and localization in rat thymus and spleen. J Neuroimmunol 206:5–13

    PubMed  CAS  Google Scholar 

  • Miller LE, Jüsten HP, Schölmerich J, Straub RH (2000) The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J 14:2097–2107

    PubMed  CAS  Google Scholar 

  • Miller LE, Grifka J, Schölmerich J, Straub RH (2002) Norepinephrine from synovial tyrosine hydroxylase positive cells is a strong indicator of synovial inflammation in rheumatoid arthritis. J Rheumatol 29:427–435

    PubMed  CAS  Google Scholar 

  • Mishima K, Otani H, Tanabe T, Kawasaki H, Oshiro A, Saito N, Ogawa R, Inagaki C (2001) Molecular mechanisms for alpha2-adrenoceptor-mediated regulation of synoviocyte populations. Jpn J Pharmacol 85:214–226

    PubMed  CAS  Google Scholar 

  • Mizuno K, Takahashi HK, Iwagaki H, Katsuno G, Kamurul HA, Ohtani S, Mori S, Yoshino T, Nishibori M, Tanaka N (2005) Beta2-adrenergic receptor stimulation inhibits LPS-induced IL-18 and IL-12 production in monocytes. Immunol Lett 101:168–172

    PubMed  CAS  Google Scholar 

  • Musgrave IF, Seifert R (1994) Human neutrophils and HL-60 cells do not possess alpha 2-adrenoceptors. Biochem Pharmacol 47:233–239

    PubMed  CAS  Google Scholar 

  • Musso NR, Brenci S, Setti M, Indiveri F, Lotti G (1996) Catecholamine content and in vitro catecholamine synthesis in peripheral human lymphocytes. J Clin Endocrinol Metab 81:3553–3557

    PubMed  CAS  Google Scholar 

  • Musso NR, Brenci S, Indiveri F, Lotti G (1997) L-tyrosine and nicotine induce synthesis of L-Dopa and norepinephrine in human lymphocytes. J Neuroimmunol 74:117–120

    PubMed  CAS  Google Scholar 

  • Nagatomi R, Kaifu T, Okutsu M, Zhang X, Kanemi O, Ohmori H (2000) Modulation of the immune system by the autonomic nervous system and its implication in immunological changes after training. Exerc Immunol Rev 6:54–74

    PubMed  CAS  Google Scholar 

  • Nance DM, Sanders VM (2007) Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav Immun 21:736–745

    PubMed  CAS  Google Scholar 

  • Neubig RR, Spedding M, Kenakin T, Christopoulos A (2003) International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol Rev 55:597–606

    PubMed  CAS  Google Scholar 

  • Nielson CP (1987) Beta-adrenergic modulation of the polymorphonuclear leukocyte respiratory burst is dependent upon the mechanism of cell activation. J Immunol 139:2392–2397

    PubMed  CAS  Google Scholar 

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    PubMed  CAS  Google Scholar 

  • Oppenheim G, Mintzer J, Halperin Y, Eliakim R, Stessman J, Ebstein RP (1984) Acute desensitization of lymphocyte beta-adrenergic-stimulated adenylate cyclase in old age and Alzheimer’s disease. Life Sci 35:1795–1802

    PubMed  CAS  Google Scholar 

  • Page GG, Ben-Eliyahu S (2000) Natural killer cell activity and resistance to tumor metastasis in prepubescent rats: deficient baselines, but invulnerability to stress and beta-adrenergic stimulation. Neuroimmunomodulation 7:160–168

    PubMed  CAS  Google Scholar 

  • Page GG, Fennelly AM, Littleton-Kearney MT, Ben-Eliyahu S (2008) Male-female differences in the impact of beta-adrenoceptor stimulation on resistance to experimental metastasis: exploring the effects of age and gonadal hormone involvement. J Neuroimmunol 193:113–119

    PubMed  CAS  Google Scholar 

  • Paietta E, Schwarzmeier JD (1983) Differences in beta-adrenergic receptor density and adenylate cyclase activity between normal and leukaemic leukocytes. Eur J Clin Invest 13:339–346

    PubMed  CAS  Google Scholar 

  • Pallinger E, Csaba G (2008) Presence and distribution of biogenic amines (histamine, serotonin and epinephrine) in immunophenotyped human immune cells. Inflamm Res 57:530–534

    PubMed  CAS  Google Scholar 

  • Panina-Bordignon P, Mazzeo D, Lucia PD, D’Ambrosio D, Lang R, Fabbri L, Self C, Sinigaglia F (1997) Beta2-agonists prevent Th1 development by selective inhibition of interleukin 12. J Clin Invest 100:1513–1519

    PubMed  CAS  Google Scholar 

  • Paul-Eugene N, Kolb JP, Abadie A, Gordon J, Delespesse G, Sarfati M, Mencia-Huerta JM, Braquet P, Dugas B (1992) Ligation of CD23 triggers cAMP generation and release of inflammatory mediators in human monocytes. J Immunol 149:3066–3071

    PubMed  CAS  Google Scholar 

  • Paul-Eugene N, Kolb JP, Calenda A, Gordon J, Kikutani H, Kishimoto T, Mencia-Huerta JM, Braquet P, Dugas B (1993) Functional interaction between beta 2-adrenoceptor agonists and interleukin-4 in the regulation of CD23 expression and release and IgE production in human. Mol Immunol 30:157–164

    PubMed  CAS  Google Scholar 

  • Paul-Eugène N, Kolb JP, Damais C, Abadie A, Mencia-Huerta JM, Braquet P, Bousquet J, Dugas B (1994) Beta 2-adrenoceptor agonists regulate the IL-4-induced phenotypical changes and IgE-dependent functions in normal human monocytes. J Leukoc Biol 55:313–320

    PubMed  Google Scholar 

  • Pender MP (1998) Genetically determined failure of activation-induced apoptosis of autoreactive T cells as a cause of multiple sclerosis. Lancet 351:978–981

    PubMed  CAS  Google Scholar 

  • Pintar JE, Breakefield XO (1982) Monoamine oxidase (MAO) activity as a determinant in human neurophysiology. Behav Genet 12:53–68

    PubMed  CAS  Google Scholar 

  • Pochet R, Delespesse G, Gausset PW, Collet H (1979) Distribution of beta-adrenergic receptors on human lymphocyte subpopulations. Clin Exp Immunol 38:578–584

    PubMed  CAS  Google Scholar 

  • Pohl A, Otto J, Urbanek R (1991) Beta-2-adrenoceptors of polymorphonuclear leukocytes in children with atopic dermatitis. Their number and affinity to the radioligand [125I]-cyanopindolol. Int Arch Allergy Appl Immunol 95:261–265

    PubMed  CAS  Google Scholar 

  • Pont-Kingdon G, Bohnsack J, Sumner K, Whiting A, Clifford B, Guthery SS, Jorde LB, Lyon E, Prahalad S (2009) Lack of association between beta 2-adrenergic receptor polymorphisms and juvenile idiopathic arthritis. Scand J Rheumatol 38:91–95

    PubMed  CAS  Google Scholar 

  • Powe DG, Voss MJ, Zänker KS, Habashy HO, Green AR, Ellis IO, Entschladen F (2010) Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1:628–638

    PubMed  Google Scholar 

  • Prösch S, Wendt CE, Reinke P, Priemer C, Oppert M, Krüger DH, Volk HD, Döcke WD (2000) A novel link between stress and human cytomegalovirus (HCMV) infection: sympathetic hyperactivity stimulates HCMV activation. Virology 272:357–365

    PubMed  Google Scholar 

  • Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S, McNamara JO, Williams SM (eds) (2001) Criteria that define a neurotransmitter. In: Neuroscience, 2nd edn. Sinauer Associates, Sunderland, MA. Accessed on 2011-04-24. http://www.ncbi.nlm.nih.gov/books/NBK10957/?rendertype=box&id=A377

  • Qiu YH, Peng YP, Jiang JM, Wang JJ (2004) Expression of tyrosine hydroxylase in lymphocytes and effect of endogenous catecholamines on lymphocyte function. Neuroimmunomodulation 11:75–83

    PubMed  CAS  Google Scholar 

  • Qiu YH, Cheng C, Dai L, Peng YP (2005) Effect of endogenous catecholamines in lymphocytes on lymphocyte function. J Neuroimmunol 167:45–52

    PubMed  CAS  Google Scholar 

  • Radojcic T, Baird S, Darko D, Smith D, Bulloch K (1991) Changes in beta-adrenergic receptor distribution on immunocytes during differentiation: an analysis of T cells and macrophages. J Neurosci Res 30:328–335

    PubMed  CAS  Google Scholar 

  • Rainer TH, Lam N, Cocks RA (1999) Adrenaline upregulates monocyte L-selectin in vitro. Resuscitation 43:47–55

    PubMed  CAS  Google Scholar 

  • Rajda C, Bencsik K, Vecsei LL, Bergquist J (2002) Catecholamine levels in peripheral blood lymphocytes from multiple sclerosis patients. J Neuroimmunol 124:93–100

    PubMed  CAS  Google Scholar 

  • Ratge D, Wiedemann A, Kohse KP, Wisser H (1988) Alterations of beta-adrenoceptors on human leukocyte subsets induced by dynamic exercise: effect of prednisone. Clin Exp Pharmacol Physiol 15:43–53

    PubMed  CAS  Google Scholar 

  • Reguzzoni M, Cosentino M, Rasini E, Marino F, Ferrari M, Bombelli R, Congiu T, Protasoni M, Quacci D, Lecchini S, Raspanti M, Frigo G (2002) Ultrastructural localization of tyrosine hydroxylase in human peripheral blood mononuclear cells: effect of stimulation with phytohaemagglutinin. Cell Tissue Res 310:297–304

    PubMed  CAS  Google Scholar 

  • Riepl B, Grässel S, Wiest R, Fleck M, Straub RH (2010) Tumor necrosis factor and norepinephrine lower the levels of human neutrophil peptides 1-3 secretion by mixed synovial tissue cultures in osteoarthritis and rheumatoid arthritis. Arthritis Res Ther 12:R110

    PubMed  Google Scholar 

  • Rouppe van der Voort C, Kavelaars A, van de Pol M, Heijnen CJ (1999) Neuroendocrine mediators up-regulate alpha1b- and alpha1d-adrenergic receptor subtypes in human monocytes. J Neuroimmunol 95:165–173

    PubMed  CAS  Google Scholar 

  • Rouppe van der Voort C, Heijnen CJ, Wulffraat N, Kuis W, Kavelaars A (2000a) Stress induces increases in IL-6 production by leucocytes of patients with the chronic inflammatory disease juvenile rheumatoid arthritis: a putative role for alpha(1)-adrenergic receptors. J Neuroimmunol 110:223–229

    Google Scholar 

  • Rouppe van der Voort C, Kavelaars A, van de Pol M, Heijnen CJ (2000b) Noradrenaline induces the phosphorylation of ERK-2 in human peripheral blood mononuclear cells after induction of α1-adrenergic receptors. J Neuroimmunol 108:82–91

    PubMed  CAS  Google Scholar 

  • Sanders VM, Baker RA, Ramer-Quinn DS, Kasprowicz DJ, Fuchs BA, Street NE (1997) Differential expression of the beta-2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol 158:4200–4210

    PubMed  CAS  Google Scholar 

  • Schedlowski M, Hosch W, Oberbeck R, Benschop RJ, Jacobs R, Raab HR, Schmidt RE (1996) Catecholamines modulate human NK cell circulation and function via spleen-independent beta 2-adrenergic mechanisms. J Immunol 156:93–99

    PubMed  CAS  Google Scholar 

  • Schopf RE, Lemmel EM (1983) Control of the production of oxygen intermediates of human polymorphonuclear leukocytes and monocytes by beta-adrenergic receptors. J Immunopharmacol 5:203–216

    PubMed  CAS  Google Scholar 

  • Schwab KO, Bartels H, Martin C, Leichtenschlag EM (1993) Decreased beta 2-adrenoceptor density and decreased isoproterenol induced c-AMP increase in juvenile type I diabetes mellitus: an additional cause of severe hypoglycaemia in childhood diabetes? Eur J Pediatr 152:797–801

    PubMed  CAS  Google Scholar 

  • Shah SM, Carey IM, Owen CG, Harris T, Dewilde S, Cook DG (2011) Does β-adrenoceptor blocker therapy improve cancer survival? Findings from a population-based retrospective cohort study. Br J Clin Pharmacol 72:157–161

    PubMed  CAS  Google Scholar 

  • Shakhar G, Ben-Eliyahu S (1998) In vivo beta-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J Immunol 160:3251–3258

    PubMed  CAS  Google Scholar 

  • Shan T, Ma Q, Zhang D, Guo K, Liu H, Wang F, Wu E (2011) β2-adrenoceptor blocker synergizes with gemcitabine to inhibit the proliferation of pancreatic cancer cells via apoptosis induction. Eur J Pharmacol 665:1–7

    PubMed  CAS  Google Scholar 

  • Sharief MK, Douglas M, Noori M, Semra YK (2002) The expression of pro- and anti-apoptosis Bcl-2 family proteins in lymphocytes from patients with multiple sclerosis. J Neuroimmunol 125:155–162

    PubMed  CAS  Google Scholar 

  • Sheppard JR, Gormus R, Moldow CF (1977) Catecholamine hormone receptors are reduced on chronic lymphocytic leukaemic lymphocytes. Nature 269:693–695

    PubMed  CAS  Google Scholar 

  • Sloan EK, Capitanio JP, Cole SW (2008) Stress-induced remodeling of lymphoid innervation. Brain Behav Immun 22:15–21

    PubMed  CAS  Google Scholar 

  • Sneader W (2005) Drug discovery: a history. Wiley, Chichester, West Sussex, England, pp 155–157

    Google Scholar 

  • Soliven B, Nelson DJ (1990) Beta-adrenergic modulation of K+ current in human T lymphocytes. J Membr Biol 117:263–274

    PubMed  CAS  Google Scholar 

  • Speidl WS, Toller WG, Kaun C, Weiss TW, Pfaffenberger S, Kastl SP, Furnkranz A, Maurer G, Huber K, Metzler H, Wojta J (2004) Catecholamines potentiate LPS-induced expression of MMP-1 and MMP-9 in human monocytes and in the human monocytic cell line U937: possible implications for peri-operative plaque instability. FASEB J 18:603–605

    PubMed  CAS  Google Scholar 

  • Spengler RN, Chensue SW, Giacherio DA, Blenk N, Kunkel SL (1994) Endogenous norepinephrine regulates tumor necrosis factor-alpha production from macrophages in vitro. J Immunol 152:3024–3031

    PubMed  CAS  Google Scholar 

  • Spooren A, Mestdagh P, Rondou P, Kolmus K, Haegeman G, Gerlo S (2011) IL-1β potently stabilizes IL-6 mRNA in human astrocytes. Biochem Pharmacol 81:1004–1015

    PubMed  CAS  Google Scholar 

  • Stefanski V, Ben-Eliyahu S (1996) Social confrontation and tumor metastasis in rats: defeat and beta-adrenergic mechanisms. Physiol Behav 60:277–282

    PubMed  CAS  Google Scholar 

  • Straub RH (2004) Complexity of the bi-directional neuroimmune junction in the spleen. Trends Pharmacol Sci 25:640–646

    PubMed  CAS  Google Scholar 

  • Straub RH, Härle P (2005) Sympathetic neurotransmitters in joint inflammation. Rheum Dis Clin North Am 31:43–59, viii

    Google Scholar 

  • Straub RH, Günzler C, Miller LE, Cutolo M, Schölmerich J, Schill S (2002a) Anti-inflammatory cooperativity of corticosteroids and norepinephrine in rheumatoid arthritis synovial tissue in vivo and in vitro. FASEB J 16:993–1000

    PubMed  CAS  Google Scholar 

  • Straub RH, Kittner JM, Heijnen C, Schedlowski M, Schmidt RE, Jacobs R (2002b) Infusion of epinephrine decreases serum levels of cortisol and 17-hydroxyprogesterone in patients with rheumatoid arthritis. J Rheumatol 29:1659–1664

    PubMed  CAS  Google Scholar 

  • Straub RH, Dhabhar FS, Bijlsma JW, Cutolo M (2005) How psychological stress via hormones and nerve fibers may exacerbate rheumatoid arthritis. Arthritis Rheum 52:16–26

    PubMed  Google Scholar 

  • Straub RH, Wiest R, Strauch UG, Härle P, Schölmerich J (2006) The role of the sympathetic nervous system in intestinal inflammation. Gut 55:1640–1649

    PubMed  CAS  Google Scholar 

  • Swanson MA, Lee WT, Sanders VM (2001) IFN-gamma production by Th1 cells generated from naive CD4+ T cells exposed to norepinephrine. J Immunol 166:232–240

    PubMed  CAS  Google Scholar 

  • Szelenyi J, Selmeczy Z, Brozik A, Medgyesi D, Magocsi M (2006) Dual beta-adrenergic modulation in the immune system: stimulus-dependent effect of isoproterenol on MAPK activation and inflammatory mediator production in macrophages. Neurochem Int 49:94–103

    PubMed  CAS  Google Scholar 

  • Takahashi HK, Morichika T, Iwagaki H, Yoshino T, Tamura R, Saito S, Mori S, Akagi T, Tanaka N, Nishibori M (2003) Effect of beta 2-adrenergic receptor stimulation on interleukin-18-induced intercellular adhesion molecule-1 expression and cytokine production. J Pharmacol Exp Ther 304:634–642

    PubMed  CAS  Google Scholar 

  • Takahashi HK, Iwagaki H, Mori S, Yoshino T, Tanaka N, Nishibori M (2004) Beta 2-adrenergic receptor agonist induces IL-18 production without IL-12 production. J Neuroimmunol 151:137–147

    PubMed  CAS  Google Scholar 

  • Takamoto T, Hori Y, Koga Y, Toshima H, Hara A, Yokoyama MM (1991) Norepinephrine inhibits human natural killer cell activity in vitro. Int J Neurosci 58:127–131

    PubMed  CAS  Google Scholar 

  • Thorpe LW, Westlund KN, Kochersperger LM, Abell CW, Denney RM (1987) Immunocytochemical localization of monoamine oxidases A and B in human peripheral tissues and brain. J Histochem Cytochem 35:23–32

    PubMed  CAS  Google Scholar 

  • Tomozawa Y, Yabuuchi K, Inoue T, Satoh M (1995) Participation of cAMP and cAMP-dependent protein kinase in beta-adrenoceptor-mediated interleukin-1 beta mRNA induction in cultured microglia. Neurosci Res 22:399–409

    PubMed  CAS  Google Scholar 

  • Townend JN, Virk SJ, Qiang FX, Lawson N, Bain RJ, Davies MK (1993) Lymphocyte beta adrenoceptor upregulation and improved cardiac response to adrenergic stimulation following converting enzyme inhibition in congestive heart failure. Eur Heart J 14:243–250

    PubMed  CAS  Google Scholar 

  • Tsao CW, Lin YS, Cheng JT (1998) Inhibition of immune cell proliferation with haloperidol and relationship of tyrosine hydroxylase expression to immune cell growth. Life Sci 62:335–344

    Google Scholar 

  • Tsavaris N, Konstantopoulos K, Vaidakis S, Koumakis K, Pangalis G (1995) Cytochemical determination of monoamine oxidase activity in lymphocytes and neutrophils of schizophrenic patients. Haematologia (Budap) 26:143–146

    CAS  Google Scholar 

  • Vago T, Norbiato G, Baldi G, Chebat E, Bertora P, Bevilacqua M (1990) Respiratory-burst stimulants desensitize beta-2 adrenoceptors on human polymorphonuclear leukocytes. Int J Tissue React 12:53–58

    PubMed  CAS  Google Scholar 

  • Wahle M, Krause A, Ulrichs T, Jonas D, von Wichert P, Burmester GR, Baerwald CG (1999) Disease activity related catecholamine response of lymphocytes from patients with rheumatoid arthritis. Ann N Y Acad Sci 876:287–296

    PubMed  CAS  Google Scholar 

  • Wahle M, Stachetzki U, Krause A, Pierer M, Hðntzschel H, Baerwald CG (2001) Regulation of beta2-adrenergic receptors on CD4 and CD8 positive lymphocytes by cytokines in vitro. Cytokine 16:205–209

    Google Scholar 

  • Wahle M, Kölker S, Krause A, Burmester GR, Baerwald CG (2001a) Impaired catecholaminergic signalling of B lymphocytes in patients with chronic rheumatic diseases. Ann Rheum Dis 60:505–510

    PubMed  CAS  Google Scholar 

  • Wahle M, Stachetzki U, Krause A, Pierer M, Häntzschel H, Baerwald CG (2001b) Regulation of beta2-adrenergic receptors on CD4 and CD8 positive lymphocytes by cytokines in vitro. Cytokine 16:205–209

    PubMed  CAS  Google Scholar 

  • Wahle M, Krause A, Pierer M, Hantzschel H, Baerwald CG (2002a) Immunopathogenesis of rheumatic diseases in the context of neuroendocrine interactions. Ann N Y Acad Sci 966:355–364

    PubMed  CAS  Google Scholar 

  • Wahle M, Pierer M, Krause A, Kolker S, Baerwald CG (2002b) Decreased catecholamine-induced cell death in B lymphocytes from patients with rheumatoid arthritis. Ann N Y Acad Sci 966:425–428

    PubMed  CAS  Google Scholar 

  • Wahle M, Greulich T, Baerwald CG, Häntzschel H, Kaufmann A (2005) Influence of catecholamines on cytokine production and expression of adhesion molecules of human neutrophils in vitro. Immunobiology 210:43–52

    PubMed  CAS  Google Scholar 

  • Wahle M, Hanefeld G, Brunn S, Straub RH, Wagner U, Krause A, Häntzschel H, Baerwald CG (2006) Failure of catecholamines to shift T-cell cytokine responses toward a Th2 profile in patients with rheumatoid arthritis. Arthritis Res Ther 8:R138

    PubMed  Google Scholar 

  • Wang J, Li J, Sheng X, Zhao H, Cao XD, Wang YQ, Wu GC (2010) Beta-adrenoceptor mediated surgery-induced production of pro-inflammatory cytokines in rat microglia cells. J Neuroimmunol 223:77–83

    PubMed  CAS  Google Scholar 

  • Werner C, Werdan K, Pönicke K, Brodde OE (2001) Impaired beta-adrenergic control of immune function in patients with chronic heart failure: reversal by beta1-blocker treatment. Basic Res Cardiol 96:290–298

    PubMed  CAS  Google Scholar 

  • Werstiuk ES, Steiner M, Burns T (1990) Studies on leukocyte beta-adrenergic receptors in depression: a critical appraisal. Life Sci 47:85–105

    PubMed  CAS  Google Scholar 

  • Whalen MM, Bankhurst AD (1990) Effects of beta-adrenergic receptor activation, cholera toxin and forskolin on human natural killer cell function. Biochem J 272:327–331

    PubMed  CAS  Google Scholar 

  • Wiegmann K, Muthyala S, Kim DH, Arnason BGW, Chelmicka-Schorr E (1995) β-adrenergic agonists suppress chronic/relapsing experimental allergic encephalomyelitis (CREAE) in Lewis rats. J Neuroimmunol 56:201–206

    PubMed  CAS  Google Scholar 

  • Wong HP, Ho JW, Koo MW, Yu L, Wu WK, Lam EK, Tai EK, Ko JK, Shin VY, Chu KM, Cho CH (2011) Effects of adrenaline in human colon adenocarcinoma HT-29 cells. Life Sci 88:1108–1112

    PubMed  CAS  Google Scholar 

  • Wrona D (2006) Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol 172:38–58

    PubMed  CAS  Google Scholar 

  • Wu JR, Chang HR, Huang TY, Chiang CH, Chen SS (1996) Reduction in lymphocyte beta-adrenergic receptor density in infants and children with heart failure secondary to congenital heart disease. Am J Cardiol 77:170–174

    PubMed  CAS  Google Scholar 

  • Xu B, Yi Q, Pirskanen R, Matell G, Eng H, Lefvert AK (1997) Decreased beta2-adrenergic receptor density on peripheral blood mononuclear cells in myasthenia gravis. J Autoimmun 10:401–406

    PubMed  CAS  Google Scholar 

  • Xu BY, Pirskanen R, Lefvert AK (1998) Antibodies against beta1 and beta2 adrenergic receptors in myasthenia gravis. J Neuroimmunol 91:82–88

    PubMed  CAS  Google Scholar 

  • Xu BY, Arlehag L, Rantapää-Dahlquist SB, Lefvert AK (2005) beta2 Adrenoceptor gene single nucleotide polymorphisms are associated with rheumatoid arthritis in northern Sweden. Ann Rheum Dis 64:773–776

    PubMed  CAS  Google Scholar 

  • Xu B, Zhang WS, Yang JL, Lû N, Deng XM, Xu H, Zhang YQ (2010) Evidence for suppression of spinal glial activation by dexmedetomidine in a rat model of monoarthritis. Clin Exp Pharmacol Physiol 37:e158–e166

    PubMed  CAS  Google Scholar 

  • Yan L, Herrmann V, Hofer JK, Insel PA (2000) Beta-adrenergic receptor/cAMP-mediated signaling and apoptosis of S49 lymphoma cells. Am J Physiol Cell Physiol 279:C1665–C1674

    PubMed  CAS  Google Scholar 

  • Yanagawa Y, Matsumoto M, Togashi H (2010) Enhanced dendritic cell antigen uptake via alpha2 adrenoceptor-mediated PI3K activation following brief exposure to noradrenaline. J Immunol 185:5762–5768

    PubMed  CAS  Google Scholar 

  • Yanagawa Y, Matsumoto M, Togashi H (2011) Adrenoceptor-mediated enhancement of interleukin-33 production by dendritic cells. Brain Behav, Immun [Epub ahead of print]

    Google Scholar 

  • Yi Q, He W, Matell G, Pirskanen R, Magnusson Y, Eng H, Lefvert AK (1996) T and B lymphocytes reacting with the extracellular loop of the beta 2-adrenergic receptor (beta 2AR) are present in the peripheral blood of patients with myasthenia gravis. Clin Exp Immunol 103:133–140

    PubMed  CAS  Google Scholar 

  • Yu BH, Dimsdale JE, Mills PJ (1999) Psychological states and lymphocyte beta-adrenergic receptor responsiveness. Neuropsychopharmacology 21:147–152

    PubMed  CAS  Google Scholar 

  • Zaffaroni M, Marino F, Bombelli R, Rasini E, Monti M, Ferrari M, Ghezzi A, Comi G, Lecchini S, Cosentino M (2008) Therapy with interferon-beta modulates endogenous catecholamines in lymphocytes of patients with multiple sclerosis. Exp Neurol 214:315–321

    PubMed  CAS  Google Scholar 

  • Zeinstra E, Wilczak N, De Keyser J (2000) [3H]dihydroalprenolol binding to beta adrenergic receptors in multiple sclerosis brain. Neurosci Lett 289:75–77

    PubMed  CAS  Google Scholar 

  • Ziegler MG, Bao X, Kennedy BP, Joyner A, Enns R (2002) Location, development, control, and function of extraadrenal phenylethanolamine N-methyltransferase. Ann N Y Acad Sci 971:76–82

    PubMed  CAS  Google Scholar 

  • Zoukos Y, Leonard JP, Thomaides T, Thompson AJ, Cuzner ML (1992) beta-Adrenergic receptor density and function of peripheral blood mononuclear cells are increased in multiple sclerosis: a regulatory role for cortisol and interleukin-1. Ann Neurol 31:657–662

    PubMed  CAS  Google Scholar 

  • Zoukos Y, Kidd D, Woodroofe MN, Kendall BE, Thompson AJ, Cuzner ML (1994) Increased expression of high affinity IL-2 receptors and β-adrenoceptors on peripheral blood mononuclear cells is associated with clinical and MRI activity in multiple sclerosis. Brain 117:307–315

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cosentino MD PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Cosentino, M., Marino, F. (2012). Nerve Driven Immunity: Noradrenaline and Adrenaline. In: Levite, M. (eds) Nerve-Driven Immunity. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0888-8_2

Download citation

Publish with us

Policies and ethics