Skip to main content

Fast Solvers and A Posteriori Error Estimates in Elastoplasticity

  • Chapter
  • First Online:
Numerical and Symbolic Scientific Computing

Abstract

The paper reports some results on computational plasticity obtained within the Special Research Program “Numerical and Symbolic Scientific Computing” and within the Doctoral Program “Computational Mathematics” both supported by the Austrian Science Fund FWF under the grants SFB F013 and DK W1214, respectively. Adaptivity and fast solvers are the ingredients of efficient numerical methods. The paper presents fast and robust solvers for both 2D and 3D plastic flow theory problems as well as different approaches to the derivations of a posteriori error estimates. In the last part of the paper higher-order finite elements are used within a new plastic-zone concentrated setup according to the regularity of the solution. The theoretical results obtained are well supported by the results of our numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ainsworth, M., Senior, B.: An adaptive refinement strategy for hp-finite element computations. In: Proceedings of international centre for mathematical sciences on Grid adaptation in computational PDES: theory and applications, pp. 165–178. Elsevier Science Publishers B. V., Amsterdam, The Netherlands (1998)

    Google Scholar 

  2. Alberty, J., Carstensen, C., Zarrabi, D.: Adaptive numerical analysis in primal elastoplasticity with hardening. Comput. Methods Appl. Mech. Eng. 171(3–4), 175–204 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuska, I., Guo, B.: The h-p version of the finite element method – Part 1: The basic approximation results. Comput. Mech. 1, 21–41 (1986)

    Article  MATH  Google Scholar 

  4. Babuška, I., Vogelius, M.: Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44(1), 75–102 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Becirovic, A., Paule, P., Pillwein, V., Riese, A., Schneider, C., Schöberl, J.: Hypergeometric summation algorithms for high order finite elements. Computing 78(3), 235–249 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bensoussan, A., Frehse, J.: Regularity results for nonlinear elliptic systems and applications. Applied Mathematical Sciences, vol. 151. Springer, Berlin (2002)

    Google Scholar 

  7. Beuchler, S., Eibner, T., Langer, U.: Primal and dual interface concentrated iterative substructuring methods. SIAM J. Numer. Anal. 46(6), 2818–2842 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beuchler, S., Pillwein, V.: Sparse shape functions for tetrahedral p-FEM using integrated Jacobi polynomials. Computing 80(4), 345–375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beuchler, S., Pillwein, V.: Completions to sparse shape functions for triangular and tetrahedral p-FEM. In: Langer, U., Discacciati, M., Keyes, D., Widlund, O., Zulehner, W. (eds.) Domain Decomposition Methods in Science and Engineering XVII, Lecture Notes in Computational Science and Engineering, vol. 60, pp. 435–442. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Brokate, M., Carstensen, C., Valdman, J.: A quasi-static boundary value problem in multi-surface elastoplasticity: Part 1 – analysis. Math. Meth. Appl. Sci. 27(14), 1697–1710 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brokate, M., Carstensen, C., Valdman, J.: A quasi-static boundary value problem in multi-surface elastoplasticity: Part 2 – numerical solution. Math. Meth. Appl. Sci. 28(8), 881–901 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carstensen, C.: Nonlinear interface problems in solid mechanics: Finite element and boundary element couplings. Habilitationsschrift, Universität Hannover (1993)

    Google Scholar 

  13. Carstensen, C.: Coupling of fem and bem for interface problems in viscoplasticity and plasticity with hardening. SIAM J. Numer. Anal. 33(1), 171–207 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carstensen, C.: Domain decomposition for a non-smooth convex minimization problem and its application to plasticity. Numer. Linear Algebra Appl. 4(3), 177–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carstensen, C.: Numerical analysis of the primal elastoplasticity with hardening. Numer. Math. (82), 577–597 (2000)

    Article  MathSciNet  Google Scholar 

  16. Carstensen, C., Orlando, A., Valdman, J.: A convergent adaptive finite element method for the primal problem of elastoplasticity. Internat. J. Numer. Methods Engrg. 67(13), 1851–1887 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38(4), 1200–1216 (2001)

    Article  MathSciNet  Google Scholar 

  18. Demkowicz, L., Rachowicz, W., Devloo, P.: A fully automatic hp-adaptivity. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 117–142 (2002)

    Google Scholar 

  19. Demkowicz, L., Šolín, P.: Goal-oriented hp-adaptivity for elliptic problems. Comput. Methods Appl. Mech. Engrg. 193(6–8), 449–468 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eibner, T., Melenk, J.M.: An adaptive strategy for hp-FEM based on testing for analyticity. Comput. Mech. 39(5), 575–595 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. SIAM, New York (1999)

    Book  MATH  Google Scholar 

  23. Griesse, R., Meyer, C.: Optimal control of static plasticity with linear kinematic hardening. Tech. rep. (2009). Weierstrass Institute for Applied Analysis and Stochastics, WIAS Preprint 1370

    Google Scholar 

  24. Gruber, P., Valdman, J.: Implementation of an elastoplastic solver based on the Moreau-Yosida theorem. Math. Comput. Simul. 76(1–3), 73–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gruber, P.G.: Solution of elastoplastic problems based on the Moreau-Yosida theorem. Master’s thesis, Institute of Computational Mathematics, Johannes Kepler University Linz, Austria (2006)

    Google Scholar 

  26. Gruber, P.G.: Adaptive strategies for hp-FEM in elastoplasticity. DK-Report 2010-02, Johannes Kepler University Linz, DK W1214 “Doctoral Program on Computational Mathematics” (2010)

    Google Scholar 

  27. Gruber, P.G.: Fast solvers and adaptive high-order FEM in elastoplasticity. Ph.D. thesis, Institute of Computational Mathematics, Johannes Kepler University Linz, Austria (2011)

    Google Scholar 

  28. Gruber, P.G., Knees, D., Nesenenko, S., Thomas, M.: Analytical and numerical aspects of time-dependent models with internal variables. Z. angew. Math. Mech. 90, 861–902 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gruber, P.G., Valdman, J.: Newton-like solver for elastoplastic problems with hardening and its local super-linear convergence. In: Kunisch, K., Of, G., Steinbach, O. (eds.) Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2007, pp. 795–803. Springer, Berlin (2008)

    Chapter  Google Scholar 

  30. Gruber, P.G., Valdman, J.: Solution of one-time-step problems in elastoplasticity by a slant Newton method. SIAM J. Sci. Comput. 31(2), 1558–1580 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Han, W., Reddy, B.D.: Plasticity, Interdisciplinary Applied Mathematics, vol. 9. Springer, New York (1999)

    Google Scholar 

  32. Hofinger, A., Valdman, J.: Numerical solution of the two-yield elastoplastic minimization problem. Computing 81(1), 35–52 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Johnson, C.: Existence theorems for plasticity problems. J. Math. Pures Appl. 55, 431–444 (1976)

    MathSciNet  MATH  Google Scholar 

  34. Johnson, C.: On plasticity with hardening. J. Math. Anal. Appls. 62, 325–336 (1978)

    Article  MATH  Google Scholar 

  35. Khoromskij, B.N., Melenk, J.M.: Boundary concentrated finite element methods. SIAM J. Numer. Anal. 41(1), 1–36 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kienesberger, J.: Multigrid preconditioned solvers for some elastoplastic problems. In: Lirkov, I., Margenov, S., Waśniewski, J., Yalamov, P. (eds.) Proceedings of LSSC 2003, Lecture Notes in Computer Science, vol. 2907, pp. 379–386. Springer, Berlin (2004)

    Google Scholar 

  37. Kienesberger, J.: Efficient solution algorithms for elastoplastic problems. Ph.D. thesis, Institute of Computational Mathematics, Johannes Kepler University Linz (2006)

    Google Scholar 

  38. Kienesberger, J., Langer, U., Valdman, J.: On a robust multigrid-preconditioned solver for incremental plasticity problems. In: Blaheta, R., Starý, J. (eds.) Proceedings of IMET 2004 – Iterative Methods, Preconditioning & Numerical PDEs, pp. 84–87. Institute of Geonics AS CR Ostrava (2004)

    Google Scholar 

  39. Kienesberger, J., Valdman, J.: Multi-yield elastoplastic continuum-modeling and computations. In: Dolejsi, V., Feistauer, M., Felcman, J., Knobloch, P., Najzar, K. (eds.) Numerical mathematics and advanced applications. Proceedings of ENUMATH 2003, pp. 539–548. Springer, Berlin (2004)

    Chapter  Google Scholar 

  40. Kienesberger, J., Valdman, J.: An efficient solution algorithm for elastoplasticity and its first implementation towards uniform h- and p- mesh refinements. In: Castro, A.B., Gomez, D., Quintela, P., Salgado, P. (eds.) Numerical mathematics and advanced applications: Proceedings of ENUMATH 2005, pp. 1117–1125. Springer, Berlin (2006)

    Chapter  Google Scholar 

  41. Knees, D., Neff, P.: Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity. SIAM J. Math. Anal. 40, 21–43 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Korneev, V.G., Langer, U.: Approximate solution of plastic flow theory problems. Teubner-Texte zur Mathematik, vol. 69. Teubner-Verlag, Leipzig (1984)

    Google Scholar 

  43. Matthies, H.: Existence theorems in thermoplasticity. J. Mécanique 18(4), 695–712 (1979)

    MathSciNet  Google Scholar 

  44. Matthies, H.: Finite element approximations in thermo-plasticity. Numer. Funct. Anal. Optim. 1(2), 145–160 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  45. Melenk, J.M.: hp-finite element methods for singular perturbations, Lecture Notes in Mathematics, vol. 1796. Springer, Berlin (2002)

    Book  Google Scholar 

  46. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  47. Neittaanmäki, P., Repin, S.: Reliable methods for computer simulation, Studies in Mathematics and its Applications, vol. 33. Elsevier Science B.V., Amsterdam (2004)

    Google Scholar 

  48. Repin, S.: A Posteriori Estimates for Partial Differential Equations, Radon Series on Computational and Applied Matehmatics, vol. 4. Walter de Gruyter, Berlin, New York (2008)

    Book  Google Scholar 

  49. Repin, S., Valdman, J.: Functional a posteriori error estimates for problems with nonlinear boundary conditions. J. Numer. Math. 16(1), 51–81 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Repin, S., Valdman, J.: Functional a posteriori error estimates for incremental models in elasto-plasticity. Cent. Eur. J. Math. 7(3), 506–519 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Schöberl, J.: Netgen – an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Visual. Sci. 1, 41–52 (1997)

    Article  MATH  Google Scholar 

  52. Schwab, C.: P- and hp- finite element methods: theory and applications in solid and fluid mechanics. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  53. Simo, J.C., Hughes, T.J.R.: Computational inelasticity, Interdisciplinary Applied Mathematics, vol. 7. Springer, New York (1998)

    Google Scholar 

  54. Stein, E.: Error-controlled Adaptive Finite Elements in Solid Mechanics. Wiley, Chichester (2003)

    Google Scholar 

  55. Valdman, J.: Mathematical and numerical analysis of elastoplastic material with multi-surface stress-strain relation. Ph.D. thesis, Christian-Albrechts-Universität zu Kiel (2002)

    Google Scholar 

  56. Valdman, J.: Minimization of functional majorant in a posteriori error analysis based on H(div) multigrid-preconditioned CG method. Advances in Numerical Analysis 2009(Article ID 164519), 15 pages (2009). DOI 10.1155/2009/164519

    Google Scholar 

  57. Wieners, C.: Multigrid methods for finite elements and the application to solid mechanics. Theorie und Numerik der Prandtl-Reuß Plastizität (2000). Habilitationsschrift, Universität Heidelberg

    Google Scholar 

  58. Zeidler, E.: Nonlinear functional analysis and its applications. III. Springer-Verlag, New York (1985). Variational methods and optimization, Translated from the German by Leo F. Boron

    Google Scholar 

  59. Zienkiewicz, O.: The Finite Element Method, 3rd Expanded & rev. ed. edn. McGraw-Hill, New York (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Langer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Gruber, P.G., Kienesberger, J., Langer, U., Schöberl, J., Valdman, J. (2012). Fast Solvers and A Posteriori Error Estimates in Elastoplasticity. In: Langer, U., Paule, P. (eds) Numerical and Symbolic Scientific Computing. Texts & Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0794-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0794-2_3

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0793-5

  • Online ISBN: 978-3-7091-0794-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics