Skip to main content

Sparsity Optimized High Order Finite Element Functions on Simplices

  • Chapter
  • First Online:
Book cover Numerical and Symbolic Scientific Computing

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

This article reports several results on sparsity optimized basis functions for hp-FEM on triangular and tetrahedral finite element meshes obtained within the Special Research Program “Numerical and Symbolic Scientific Computing” and within the Doctoral Program “Computational Mathematics” both supported by the Austrian Science Fund FWF under the grants SFB F013 and DK W1214, respectively. We give an overview on the sparsity pattern for mass and stiffness matrix in the spaces L 2, H 1, H({ div}) and H(curl). The construction relies on a tensor-product based construction with properly weighted Jacobi polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions. Dover-Publications, New York (1965)

    Google Scholar 

  2. Ainsworth, M.: A preconditioner based on domain decomposition for h-p finite element approximation on quasi-uniform meshes. SIAM J. Numer. Anal. 33(4), 1358–1376 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ainsworth, M., Coyle, J.: Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Num. Meth. Eng. 58(14), 2103–2130 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ainsworth, M., Demkowicz, L.: Explicit polynomial preserving trace liftings on a triangle. Math. Nachr. 282(5), 640–658 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ainsworth, M., Guo, B.: An additive Schwarz preconditioner for p-version boundary element approximation of the hypersingular operator in three dimensions. Numer. Math. 85(3), 343–366 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Appell, P.: Sur des polynômes de deux variables analogues aux polynômes de jacobi. Arch. Math. Phys. 66, 238–245 (1881)

    MATH  Google Scholar 

  7. Babuška, I., Craig, A., Mandel, J., Pitkäranta, J.: Efficent preconditioning for the p-version finite element method in two dimensions. SIAM J. Numer. Anal. 28(3), 624–661 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Babuška, I., Guo, B.Q.: The h-p version of the finite element method for domains with curved boundaries. SIAM J. Numer. Anal. 25(4), 837–861 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Babuška, I., Griebel, M., Pitkäranta, J.: The problem of selecting the shape functions for a p-type finite element. Int. Journ. Num. Meth. Eng. 28, 1891–1908 (1989)

    Article  MATH  Google Scholar 

  10. Bernardi, C., Dauge, M., Maday, Y.: Polynomials in weighted Sobolev spaces: Basics and trace liftings. Technical Report R 92039, Universite Pierre et Marie Curie, Paris (1993)

    Google Scholar 

  11. Bernardi, Ch., Dauge, M., Maday, Y.: The lifting of polynomial traces revisited. Math. Comp. 79(269), 47–69 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beuchler, S.: Multi-grid solver for the inner problem in domain decomposition methods for p-FEM. SIAM J. Numer. Anal. 40(3), 928–944 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Beuchler, S.: Wavelet solvers for hp-FEM discretizations in 3D using hexahedral elements. Comput. Methods Appl. Mech. Engrg. 198(13-14), 1138–1148, (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Beuchler, S., Pillwein, V.: Shape functions for tetrahedral p-fem using integrated Jacobi polynomials. Computing 80, 345–375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Beuchler, S., Pillwein, V.: Completions to sparse shape functions for triangular and tetrahedral p-fem. In Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W. (eds.) Domain Decomposition Methods in Science and Engineering XVII, volume 60 of Lecture Notes in Computational Science and Engineering, pp. 435–442, Springer, Heidelberg (2008). Proceedings of the 17th International Conference on Domain Decomposition Methods held at St. Wolfgang / Strobl, Austria, July 3–7, 2006

    Google Scholar 

  16. Beuchler, S., Pillwein, V., Zaglmayr, S.: Sparsity optimized high order finite element functions for H(div) on simplices. Technical Report 2010-04, DK Computational Mathematics, JKU Linz (2010)

    Google Scholar 

  17. Beuchler, S., Pillwein, V., Zaglmayr, S.: Sparsity optimized high order finite element functions for H(curl) on tetrahedral meshes. Technical Report Report RICAM, Johann Radon Institute for Computational and Applied Mathematics, Linz (2011) in preparation.

    Google Scholar 

  18. Beuchler, S., Schneider, R., Schwab, C.: Multiresolution weighted norm equivalences and applications. Numer. Math. 98(1), 67–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Beuchler, S., Schöberl, J.: New shape functions for triangular p-fem using integrated jacobi polynomials. Numer. Math. 103, 339–366 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bossavit, A.: Computational Electromagnetism: Variational formulation, complementary, edge elements. Academic Press Series in Electromagnetism. Academic, San Diego (1989)

    Google Scholar 

  21. Braess, D.: Finite Elemente. Springer, Berlin (1991)

    Google Scholar 

  22. Braess, D.: Approximation on simplices and orthogonal polynomials. In Trends and applications in constructive approximation, volume 151 of Internat. Ser. Numer. Math., pp. 53–60. Birkhäuser, Basel (2005)

    Google Scholar 

  23. Chyzak, F.: Gröbner bases, symbolic summation and symbolic integration. In Gröbner bases and applications (Linz, 1998), volume 251 of London Math. Soc. Lecture Note Ser., pp. 32–60. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  24. Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete Math. 217(1-3), 115–134 (2000). Formal power series and algebraic combinatorics (Vienna, 1997)

    Google Scholar 

  25. Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput. 26(2), 187–227 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North–Holland, Amsterdam (1978)

    Google Scholar 

  27. Costabel, M., Dauge, M., Demkowicz, L.: Polynomial extension operators for H 1, H(curl) and H(div)-spaces on a cube. Math. Comp. 77(264), 1967–1999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Demkowicz, L.: Computing with hp Finite Elements. CRC Press, Taylor and Francis (2006)

    Book  Google Scholar 

  29. Demkowicz, L., Gopalakrishnan, J., Schöberl, J.: Polynomial extension operators. I. SIAM J. Numer. Anal. 46(6), 3006–3031 (2008)

    Article  MATH  Google Scholar 

  30. Demkowicz, L., Gopalakrishnan, J., Schöberl, J.: Polynomial extension operators. II. SIAM J. Numer. Anal. 47(5), 3293–3324 (2009)

    Article  MATH  Google Scholar 

  31. Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.: Computing with hp-adaptive finite elements. Vol. 2. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, FL, (2008). Frontiers: three dimensional elliptic and Maxwell problems with applications

    Google Scholar 

  32. Demkowicz, L., Monk, P., Vardapetyan, L., Rachowicz, W.: De Rham diagram for hp finite element spaces. Comput. Math. Apl. 39(7-8), 29–38, (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Deville, M.O., Mund, E.H.: Finite element preconditioning for pseudospectral solutions of elliptic problems. SIAM J. Sci. Stat. Comp. 18(2), 311–342 (1990)

    Article  MathSciNet  Google Scholar 

  34. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Computing 6, 345 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dunkl, C.F., Xu, Y.: Orthogonal polynomials of several variables, volume 81 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  36. Eibner, T., Melenk, J.M.: An adaptive strategy for hp-FEM based on testing for analyticity. Comput. Mech. 39(5), 575–595 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  38. Guo, B., Cao, W.: An iterative and parallel solver based on domain decomposition for the hp- version of the finite element method. J. Comput. Appl. Math. 83, 71–85 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ivanov, S.A., Korneev, V.G.: On the preconditioning in the domain decomposition technique for the p-version finite element method. Part I. Technical Report SPC 95-35, Technische Universität Chemnitz-Zwickau, December 1995

    Google Scholar 

  40. Ivanov, S.A., Korneev, V.G.: On the preconditioning in the domain decomposition technique for the p-version finite element method. Part II. Technical Report SPC 95-36, Technische Universität Chemnitz-Zwickau, December 1995

    Google Scholar 

  41. Jensen, S., Korneev, V.G.: On domain decomposition preconditioning in the hierarchical p − version of the finite element method. Comput. Methods. Appl. Mech. Eng. 150(1–4), 215–238 (1997)

    MathSciNet  MATH  Google Scholar 

  42. Karniadakis, G.M., Sherwin, S.J.: Spectral/HP Element Methods for CFD. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  43. Kauers, M.: SumCracker – A Package for Manipulating Symbolic Sums and Related Objects. J. Symbolic Comput. 41(9), 1039–1057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Korneev, V., Langer, U., Xanthis, L.: On fast domain decomposition methods solving procedures for hp-discretizations of 3d elliptic problems. Comput. Meth. Appl. Math. 3(4), 536–559, (2003)

    MathSciNet  MATH  Google Scholar 

  45. Koutschan, C.: HolonomicFunctions (User’s Guide). Technical Report 10-01, RISC Report Series, University of Linz, Austria, January 2010

    Google Scholar 

  46. Melenk, J.M., Pechstein, C., Schöberl, J., Zaglmayr, S.: Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements. IMA J. Num. Anal. 28, 1–24 (2008)

    MATH  Google Scholar 

  47. Melenk, J.M., Gerdes, K., Schwab, C.: Fully discrete hp-finite elements: Fast quadrature. Comp. Meth. Appl. Mech. Eng. 190, 4339–4364 (1999)

    Article  Google Scholar 

  48. Monk, P.: Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, New York (2003)

    Book  MATH  Google Scholar 

  49. Munoz-Sola, R.: Polynomial liftings on a tetrahedron and applications to the h-p version of the finite element method in three dimensions. SIAM J. Numer. Anal. 34(1), 282–314 (1996)

    Article  MathSciNet  Google Scholar 

  50. Nédélec, J.C.: Mixed finite elements in 3. Numerische Mathematik 35(35), 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pavarino, L.F.: Additive schwarz methods for the p-version finite element method. Numer. Math. 66(4), 493–515 (1994)

    MathSciNet  MATH  Google Scholar 

  52. Petkovšek, M., Wilf, H.S., Zeilberger, D.: A = B. A K Peters Ltd., Wellesley, MA (1996)

    MATH  Google Scholar 

  53. Quateroni, A., Valli, A.: Numerical Approximation of partial differential equations. Number 23 in Springer Series in Computational Mathematics. Springer, Berlin (1997)

    Google Scholar 

  54. Schöberl, J., Zaglmayr, S.: High order Nédélec elements with local complete sequence properties. International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL) 24, 374–384 (2005)

    Google Scholar 

  55. Schöberl, J., Zaglmayr, S.: hp finite element De Rham sequences on hybrid meshes, in preparation

    Google Scholar 

  56. Schwab, C.: p − and hp − finite element methods. Theory and applications in solid and fluid mechanics. Clarendon Press, Oxford (1998)

    Google Scholar 

  57. Sherwin, S.J., Karniadakis, G.E.: A new triangular and tetrahedral basis for high-order finite element methods. Int. J. Num. Meth. Eng. 38, 3775–3802 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  58. Solin, P., Segeth, K., Dolezel, I.: Higher-Order Finite Element Methods. Chapman and Hall, CRC Press (2003)

    Google Scholar 

  59. Szegö, G.: Orthogonal Polynomials. AMS Colloquium Publications, Vol. XXIII. 3rd edn. (1974)

    Google Scholar 

  60. Tricomi, F.G.: Vorlesungen über Orthogonalreihen. Springer, Berlin (1955)

    Book  MATH  Google Scholar 

  61. Wilf, H.S., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities. Invent. Math. 108(3), 575–633 (1992)

    Article  MathSciNet  Google Scholar 

  62. Zaglmayr, S.: High Order Finite Elements for Electromagnetic Field Computation. PhD thesis, Johannes Kepler University, Linz, Austria (2006)

    Google Scholar 

  63. Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Discrete. Math. 80, 207–211 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32(3), 321–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  65. Zeilberger, D.: The method of creative telescoping. J. Symbolic Comput. 11, 195–204 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the FWF-projects P20121-N12 and P20162-N18, the Austrian Academy of Sciences, the Spezialforschungsbereich “Numerical and Symbolic Scientific Computing” (SFB F013) , the doctoral program “Computational Mathematics” (W1214) and the FWF Start Project Y-192 on “3D hp-Finite Elements: Fast Solvers and Adaptivity”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Beuchler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Beuchler, S., Pillwein, V., Schöberl, J., Zaglmayr, S. (2012). Sparsity Optimized High Order Finite Element Functions on Simplices. In: Langer, U., Paule, P. (eds) Numerical and Symbolic Scientific Computing. Texts & Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0794-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0794-2_2

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0793-5

  • Online ISBN: 978-3-7091-0794-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics