Skip to main content

Polysaccharides: Molecular and Supramolecular Structures. Terminology

  • Chapter
  • First Online:

Abstract

This chapter summarises important issues about the molecular and supramolecular structure of polysaccharides. It describes the terminology of polysaccharides systematically. The polysaccharides are divided regarding the molecular structures in glucans, polyoses, polysaccharides with amino functions, polysaccharides with acid functions and some miscellaneous. The most important glucans cellulose, (1 → 3)-β-d-glucans, starch, glycogen, dextran and pullulan are discussed. For polyoses, xylans, mannans, xyloglucans and mixed-linkage β-glucans are described. Polysaccharides with amino functions include the description of chitin and chitosan, hyaluronan or hyaluronic acid, glycosaminoglycans and murein. The polysaccharides with acid functions are described including pectins, alginates, agar-agar and carrageenan. Moreover, inulin, levan and xanthan gum are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adinolfi M, Corsaro MM, Lanzetta R, Parrilli M, Folkard G, Grant W, Sutherland J (1994) Composition of the coagulant polysaccharide fraction from Strychnos potatorum seeds. Carbohydr Res 263:103

    PubMed  CAS  Google Scholar 

  • Alsop RM, Byrne GA, Done JN, Earl IE, Gibbs R (1977) Quality assurance in clinical dextran manufacture by molecular-weight characterization. Process Biochem 12:15–35

    CAS  Google Scholar 

  • Altaner C, Knox JP, Jarvis MC (2007) In situ detection of cell wall polysaccharides in sitka spruce (Picea sitchensis (Bong. carrière) wood tissue. BioResources 2: 284–295

    CAS  Google Scholar 

  • Antonini E, Bellelli L, Bruzzesi MR, Caputo A, Chiancone E, Rossi-Fanelli A (1964) Studies on dextran and dextran derivatives. I. Properties of native dextran in different solvents. Biopolymers 2:27–34

    CAS  Google Scholar 

  • Armisén R, Galatas F (2009) Agar. In: Philips GO, Williman PA (eds) Handbook of hydrocolloids. Woodhead Publishing Ltd., Cambridge. ISBN 978-1-84569-414-2

    Google Scholar 

  • Arnott S, Fulmer A, Scottl WE, Dea CM, Moorhouse R, Rees DA (1974) The agarose double helix and its function in agarose gel structure. J Mol Biol 90: 269–272

    PubMed  CAS  Google Scholar 

  • Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    PubMed  CAS  Google Scholar 

  • Bathgate GN, Manners DJ (1966) Multiple branching in glycogens. Biochem J 101:3c–5c

    PubMed  CAS  Google Scholar 

  • Bender H, Wallenfels K (1961) Investigations on pullulan. II. Specific degradation by means of a bacterial enzyme. Biochem Z 334:79–95

    CAS  Google Scholar 

  • Bender H, Lehmann J, Wallenfels K (1959) Pullulan, an extracellular glucan from Pullularia pullulans. Biochim Biophys Acta 36:309–316

    PubMed  CAS  Google Scholar 

  • Bender H, Siebert R, Stadler-Szöke A (1982) Can cyclodextrin glycosyltransferase be useful for the investigation of the fine structure of amylopectins? Characterisation of highly branched clusters isolated from digests with potato and maize starches. Carbohydr Res 110:245–259

    CAS  Google Scholar 

  • Bertoft E (2004a) On the nature of categories of chains in amylopectin and their connection to the super helix model. Carbohydr Polym 57:211–224

    CAS  Google Scholar 

  • Bertoft E (2004b) Lintnerisation of two amylose-free starches of A- and B-crystalline types, respectively. Starch-Starke 56:167–180

    CAS  Google Scholar 

  • Bertoft E (2007a) Composition of building blocks in clusters from potato amylopectin. Carbohydr Polym 70:123–136

    CAS  Google Scholar 

  • Bertoft E (2007b) Composition of clusters and their arrangement in potato amylopectin. Carbohydr Polym 70:433–446

    Google Scholar 

  • Bertoft E, Zhu Q, Andtfolk H, Jungner M (1999) Structural heterogeneity in waxy-rice starch. Carbohydr Polym 38:349–359

    CAS  Google Scholar 

  • Blows JMH, Calder PC, Geddes R, Wills PR (1988) The structure of placental glycogen. Placenta 9:493–500

    PubMed  CAS  Google Scholar 

  • Bluhm TL, Sarko A (1977) The triple helical structure of lentinan, a linear β-(1 → 3)-d-glucan. Can J Chem 55: 293–299

    CAS  Google Scholar 

  • Bluhm TL, Deslands Y, Marchessault RH, Perz S, Rinaudo M (1982) Solid-state and solution conformations of scleroglucan. Carbohydr Res 100:117–130

    CAS  Google Scholar 

  • Boral S, Saxena A, Bohidar HB (2008) Universal growth of microdomains and gelation transition in agar hydrogels. J Phys Chem 112:3625–3632

    CAS  Google Scholar 

  • Born K, Langendorff V, Boulenguer P (2002) Xanthan. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide I. Wiley-VCH, Weinheim, p 259

    Google Scholar 

  • Bouveng HO, Kiessling H, Lindberg B, McKay J (1963) Polysaccharides elaborated by Pullularia pullulans. II. The partial acid hydrolysis of the neutral glucan synthesized from sucrose solutions. Acta Chem Scand 17:797–800

    CAS  Google Scholar 

  • Bovey FA (1959) Enzymatic polymerization. I. Molecular weight and branching during the formation of dextran. J Polym Sci 35:167–182

    CAS  Google Scholar 

  • Bu H, Kjøniksen A-L, Knudsen KD, Nyström B (2005) Effects of surfactant and temperature on rheological and structural properties of semidilute aqueous solutions of unmodified and hydrophobically modified alginate. Langmuir 21:10923–10930

    PubMed  CAS  Google Scholar 

  • Calder PC (1991) Glycogen structure and biogenesis. Int J Biochem 23(12):1335–1352

    PubMed  CAS  Google Scholar 

  • Calder PC, Geddes R (1985) The proteoglucan nature of mammalian muscle glycogen. Glycoconj J 2:365–373

    CAS  Google Scholar 

  • Calder PC, Geddes R (1986) Digestion of the protein associated with muscle and liver glycogens. Carbohydr Res 148:173–177

    PubMed  CAS  Google Scholar 

  • Catley BJ, Ramsay A, Servis C (1986) Observations on the structure of the fungal extracellular polysaccharide, pullulan. Carbohydr Res 153:79–86

    CAS  Google Scholar 

  • Chaubey M, Kapoor VP (2001) Structure of a galactomannan from the seeds of Cassia angustifolia Vahl. Carbohydr Res 332:439–444

    PubMed  CAS  Google Scholar 

  • Chuah CT, Sarko A, Deslandes Y, Marchessault RH (1983) Packing analysis of carbohydrates and polysaccharides. Part 14. Triple helical crystalline structure of curdlan and paramylon hydrates. Macromolecules 16: 1375–1382

    CAS  Google Scholar 

  • Cleemput G, van Oort M, Hessing M, Bergmans MEF, Gruppen H, Grobet PJ, Delcour JA (1995) Variation in the degree of d-xylose substitution in arabinoxylans extracted from a European wheat flour. J Cereal Sci 22:73–84

    CAS  Google Scholar 

  • Corsaro MM, Giudicianni I, Lanzetta R, Marciano CE, Monaco P, Parrilli M (1995) Polysaccharides from seeds of Strychnos species. Phytochemistry 39: 1377–1380

    PubMed  CAS  Google Scholar 

  • Deslandes Y, Marchessault RH, Sarko A (1980) Triple-helical structure of (1 → 3)-β-d-glucan. Macromolecules 13: 1466–1471

    CAS  Google Scholar 

  • Dols M, Remaud-Simeon M, Willemot RM, Vignon M, Monsan PF (1997) Characterization of dextransucrases from Leuconostoc mesenteroides NRRL B-1299. Appl Biochem Biotechnol 62:47

    CAS  Google Scholar 

  • Ebringerová A (2006) Structural diversity and application potential of hemicelluloses. Macromol Symp 232:1–12

    Google Scholar 

  • Ebringerová A, Heinze T (2000) Xylan and xylan derivatives - biopolymers with valuable properties, 1. Naturally occurring xylans: structures, isolation, procedure and properties. Rapid Commun 21:542–556

    Google Scholar 

  • Ebringerová A, Hromádková Z (1999) Xylans of industrial and biomedical importance. In: Harding SE (ed) Biotechnology and genetic engineering reviews, vol 16. Intercept, England, p 325

    Google Scholar 

  • Ebringerová A, Hromádková Z, Alföldi J, Hříbalová V (1998) The immunologically active xylan from ultrasound-treated corn cobs: extractability, structure and properties. Carbohydr Polym 37:231–239

    Google Scholar 

  • Ebringerová A, Kardšová A, Hromádková Z, Hříbalová V (2003) Mitogenic and comitogenic activities of polysaccharides from some European herbaceous plants. Fitoterapia 74:52–61

    PubMed  Google Scholar 

  • Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose, In: Polysaccharides I, Structure, characterization and use. Adv Polym Sci 186:1–67

    CAS  Google Scholar 

  • Edgar KJ (2009) Polysaccharide chemistry: frontiers and challenges. In: Polysaccharide materials: performance by design. ACS Symp Ser 1017:3–12

    CAS  Google Scholar 

  • Esko JD, Kimata K, Lindahl U (2009) Proteoglycans and sulfated glycosaminoglycans. In: Varki A et al (eds) Essentials of glycobiology. Cold Spring Harbor Lab Press, Cold Spring Harbor, NY, http://www.ncbi.nlm.nih.gov/books/NBK1908/?amp=&part=ch16

    Google Scholar 

  • Evtuguin DV, Tomás JL, Silva AMS, Neto CP (2003) Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill. Carbohydr Res 338: 597–604

    PubMed  CAS  Google Scholar 

  • Fischer MH, Yu N, Gray GR, Ralph JR, Anderson L, Marlett JA (2004) The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydr Res 339:2009–2017

    PubMed  CAS  Google Scholar 

  • Franck A, De Leenheer L (2002) Polysaccharides. II. Polysaccharides from eukaryotes. In: Vandamme EJ, De Baets S, Steinbüchel A (eds) Biopolymers, vol 6. Wiley, Weinheim, pp 439–479

    Google Scholar 

  • French D (1972) Fine structure of starch and its relationship to the organization of starch granules. J Jpn Soc Starch Sci 19:8–25

    CAS  Google Scholar 

  • Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40:1–11

    CAS  Google Scholar 

  • Fujii N, Shinohara S, Ueno H, Imada K (1984) Polysaccharide produced by Aureobasidium sp. (black yeast). Kenkyu Hokuku-Miyazaki Daigaku Nogakubu, vol 31, pp 253–262

    Google Scholar 

  • Fulton WS, Atkins EDT (1980) The gelling mechanism and relationship to molecular structure of microbial polysaccharide curdlan. In: French AD, Gardner KH (eds) Fibre diffraction methods. American Chemical Society, Washington, DC, pp 385–410

    Google Scholar 

  • Gallagher JT, Lyon M, Steward WP (1986) Structure and function of heparan sulphate proteoglycans. Biochem J 236:313–325

    PubMed  CAS  Google Scholar 

  • Gallant DJ, Bouchet B, Buléon A, Pérez S (1992) Physical characteristics of starch granules and susceptibility enzymatic degradation. Eur J Clin Nutr 46:3–16

    Google Scholar 

  • Ganter JLMS, Heyraud A, Petkowicz CLOM, Rinaudo M, Reicher F (1995) Galactomannans from Brazilian seeds: characterization of the oligosaccharides produced by mild acid hydrolysis. Int J Biol Macromol 17:13–19

    PubMed  CAS  Google Scholar 

  • Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can J Chem 63:173–180

    CAS  Google Scholar 

  • Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001

    CAS  Google Scholar 

  • Gérard C, Planchot V, Colonna P, Bertoft E (2000) Relationship between branching density and crystalline structure of A- and B-type maize mutant starches. Carbohydr Res 326:130–144

    PubMed  Google Scholar 

  • Giavasis I, Harvey LM, McNeil B (2002) Scleroglucan. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide II. Wiley-VCH, Weinheim, p 37

    Google Scholar 

  • Gibbs PA, Seviour RJ (1996) Pullulan. In: Dimitiu S (ed) Polysaccharides in medicinal applications. Dekker, New York, pp 59–86

    Google Scholar 

  • Gilmore KS, Russell RR, Ferretti JJ (1990) Analysis of the Streptococcus downei gtfS gene, which specifies a glucosyltransferase that synthesizes soluble glucans. Infect Immun 58:2452

    PubMed  CAS  Google Scholar 

  • Goldsmith E, Sprang S, Fletterick R (1982) Structure of maltoheptaose by difference Fourier methods and a model for glycogen. J Mol Biol 156:411–427

    PubMed  CAS  Google Scholar 

  • Guizard C, Chanzy H, Sarko A (1984) Molecular and crystal structure of dextrans: a combined electron and X-ray diffraction study. 1. The anhydrous high-temperature polymorph. Macromolecules 17:100–107

    CAS  Google Scholar 

  • Gunja-Smith Z, Marshall JJ, Mercier C, Smith EE, Whelan WJ (1970) A revision of the Meyer-Bernfeld model of glycogen and amylopectin. FEBS Lett 12: 101–104

    PubMed  Google Scholar 

  • Gunja-Smith Z, Marshall JJ, Smith EE (1971) Enzymatic determination of the unit chain length of glycogen and related polysaccharides. FEBS Lett 13:309–311

    CAS  Google Scholar 

  • Hanashiro I, Abe J-I, Hizukuri S (1996) A periodic distribution of chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydr Res 283:151–159

    CAS  Google Scholar 

  • Hare MD, Svensson S, Walker GJ (1978) Characterization of the extracellular, water-insoluble α-d-glucans of oral streptococci by methylation analysis, and by enzymatic synthesis and degradation. Carbohydr Res 66:245–264

    CAS  Google Scholar 

  • Harris PJ, Henry RJ, Blakeney AB, Stone BA (1984) An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydr Res 127:59–73

    PubMed  CAS  Google Scholar 

  • Hayashi A, Kinoshita K, Miyake Y (1981) The conformation of amylose in solution. Polym J 13:537–541

    CAS  Google Scholar 

  • Heidrich C, Vollmer W (2002) Murein (peptidoglycan). In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide I. Wiley-VCH, Weinheim, p 431

    Google Scholar 

  • Heinze T, Liebert T, Koschella A (2006a) Esterification of polysaccharides. Springer, Heidelberg, p 5

    Google Scholar 

  • Heinze T, Liebert T, Heublein B, Hornig S (2006b) Functional polymers based on dextran. Adv Polym Sci 205: 199–291

    CAS  Google Scholar 

  • Hermansson A-M, Eriksson E, Jordansson E (1991) Effects of potassium, sodium and calcium on the microstructure and rheological behaviour of the kappa-carrageenan gels. Carbohydr Polym 16:297–320

    CAS  Google Scholar 

  • Hizukuri S (1985) Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydr Res 141: 295–306

    CAS  Google Scholar 

  • Hizukuri S (1986) Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res 147:342–347

    CAS  Google Scholar 

  • Hoffman M, Jia Z, Pena MJ, Cash M, Harper A, Blackburn AR II, Darvill A, York WS (2005) Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohydr Res 340:1826–1840

    PubMed  CAS  Google Scholar 

  • Hon DN-S (1996) Functional polymers: a new dimensional creativity in lignocellulosic chemistry. In: Hon DN-S (ed) Chemical modification of lignocellulosic materials. Dekker, New York, pp 1–10

    Google Scholar 

  • Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267

    CAS  Google Scholar 

  • Hromádková Z, Kovačiková J, Ebringerová A (1999) Study of the classical and ultrasound-assisted extraction of the corn cob xylan. Ind Crop Prod 9:101–109

    Google Scholar 

  • Huynh R, Chaubet F, Jozefonvicz J (1998) Carboxymethylation of dextran in aqueous alcohol as the first step of the preparation of derivatized dextrans. Angew Makromol Chem 254:61–65

    CAS  Google Scholar 

  • Illingworth B, Lamer J, Cori GT (1952) Structure of glycogens and amylopectins. I. Enzymatic determination of chain length. J Biol Chem 199:631–640

    PubMed  CAS  Google Scholar 

  • Ioan CE, Aberle T, Burchard W (2000) Structure properties of dextran. 2. Dilute solution. Macromolecules 33: 5730–5739

    CAS  Google Scholar 

  • Ishii T (1997) Structure and functions of feruloylated polysaccharides. Plant Sci 127:111–127

    CAS  Google Scholar 

  • Ishrud O, Zahid M, Zhou H, Pan Y (2001) A water-soluble galactomannan from the seeds of Phoenix dactylifera L.. Carbohydr Res 335:297–301

    PubMed  CAS  Google Scholar 

  • Jaffe MJ, Teleweski FW, Cooke PW (1984) Thigmomorphogenesis: on the mechanical properties of mechanically perturbed bean plants. Physiol Plant 62:73–78

    PubMed  CAS  Google Scholar 

  • Jane J-L, Kasemsuwan T, Leas S, Zobel H, Robyt JF (1994) Anthology of starch granule morphology by scanning electron microscopy. Starch-Starke 46: 121–129

    CAS  Google Scholar 

  • Jang M-K, Kong B-G, Jeong Y-I, Lee CH, Nah J-W (2004) Physicochemical characterization of α-chitin, β-chitin and γ-chitin separated from natural resources. J Polym Sci 42:3423–3432

    CAS  Google Scholar 

  • Jeanes A, Haynes WC, Wilham CA, Rankin JC, Melvin EH, Austin MJ, Cluskey JE, Fisher BE, Tsuchiya HM, Rist CE (1954) Characterization and classification of dextrans from ninety-six strains of bacteria. J Am Chem Soc 76:5041–5052

    CAS  Google Scholar 

  • Jenkins PJ, Donald AM (1995) The influence of amylose on starch granule structure. Int J Biol Macromol 17: 315–321

    PubMed  CAS  Google Scholar 

  • Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106

    CAS  Google Scholar 

  • Kamide K, Okajima K, Kowsaka K, Matsui T (1985) CP/MASS 13C NMR spectra of cellulose solids: an explanation by the intramolecular hydrogen bond concept. Polym J 17:701–706

    CAS  Google Scholar 

  • Kapoor VP, Chanzy H, Taravel FR (1995) X-ray diffraction studies on some seed galactomannans from India. Carbohydr Polym 27:229–233

    CAS  Google Scholar 

  • Kapoor VP, Taravel FR, Joseleau J-P, Milas M, Chanzy H, Rinaudo M (1998) Cassia spectabilis DC seed galactomannan: structural, crystallographical and rheological studies. Carbohydr Res 306:231–241

    PubMed  CAS  Google Scholar 

  • Kasai N, Harada T (1980) Ultrastructure of curdlan. In: French AD, Gardner KH (eds) Fiber diffraction methods, vol 141. ACS Symposium, Washington, DC, pp 363–383

    Google Scholar 

  • Katz JR (1928) In: Walton RP (ed) A comprehensive survey of starch chemistry. Reinhold, New York, p 68

    Google Scholar 

  • Keith K, Wiley B, Ball D, Arcidiacono S, Zorfass D, Mayer J, Kaplan D (1991) Continuous culture system for production of biopolymer levan using Erwinia herbicola. Biotechnol Bioeng 38:557–560

    PubMed  CAS  Google Scholar 

  • Kjolberg O, Manners DJ, Wright A (1963) α-1,4-Glucosans. XVII. The molecular structure of some glycogens. Comp Biochem Physiol 8:353–365

    Google Scholar 

  • Klemm D, Schmauder H-P, Heinze T (2002) Cellulose. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide II. Wiley-VCH, Weinheim, p 275

    Google Scholar 

  • Kondo T (1997) The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives. J Polym Sci B Polym Phys 35:717–723

    CAS  Google Scholar 

  • Kondo T (2005) Hydrogen bonds in cellulose and cellulose derivatives. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Dekker, New York, pp 69–98

    Google Scholar 

  • Kong X, Corke H, Bertoft E (2009) Fine structure characterization of amylopectins from grain amaranth starch. Carbohydr Res 344:1701–1708

    PubMed  CAS  Google Scholar 

  • Koreeda A, Harada T, Ogawa K, Sato S, Kasai N (1974) Study of the ultrastructure of gel-forming (1 → 3)-β-d-glucan (curdlan type polysaccharide) by electron microscopy. Carbohydr Res 33:396–399

    PubMed  CAS  Google Scholar 

  • Krässig HA (1993) Cellulose - structure, accessibility, and reactivity. Gordon & Breach, Amsterdam

    Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen bonding scheme in cellulose II from a neutron fibre diffraction analysis. J Am Chem Soc 121:9940–9946

    CAS  Google Scholar 

  • Laohaphatanaleart K, Piyachomkwan K, Sriroth K, Bertoft E (2010) The fine structure of cassava amylopectin. Part 1: Organization of clusters. Int J Biol Macromol 47:317–324

    PubMed  CAS  Google Scholar 

  • Larm O, Lindberg B, Svensson S (1971) Studies on the length of the side chains of the dextran elaborated by Leuconostoc mesenteroides NRRL B-512. Carbohydr Res 20:39–48

    PubMed  CAS  Google Scholar 

  • Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62:468–473

    PubMed  CAS  Google Scholar 

  • Lee EYC, Whelan WJ (1966) Enzymic methods for the microdetermination of glycogen and amylopectin, and their unit-chain lengths. Arch Biochem Biophys 116: 162–167

    PubMed  CAS  Google Scholar 

  • Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J Polym Sci 37:385–395

    CAS  Google Scholar 

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    CAS  Google Scholar 

  • Lundqvist J, Teleman A, Junel L, Zacchi G, Dahlman O, Tjerneld F, Stålbrand H (2002) Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydr Polym 48:29–39

    CAS  Google Scholar 

  • Malmström A, Aberg L (1982) Biosynthesis of dermatan sulphate. Assay and properties of the uronosyl C-5 epimerase. Biochem J 201:489–493

    PubMed  Google Scholar 

  • Manners DJ (1957) The molecular structure of glycogens. Adv Carbohydr Chem Biochem 12:261–298

    CAS  Google Scholar 

  • Manners DJ (1962) Enzymic synthesis and degradation of starch and glycogen. Adv Carbohydr Chem Biochem 17:371–430

    CAS  Google Scholar 

  • Manners DJ, Wright A (1962) α-1,4-d-Glucosans Part XIII. Determination of the average chain length of glycogens by α-amylolysism. J Chem Soc, 1597–1602

    Google Scholar 

  • Manno M, Emanuelle A, Martorana V, Bulone D, San Biagio PL, Palma-Vittorelli MB, Palma MU (1999) Multiple interactions between molecular and supramolecular ordering. Phys Rev E59:2222–2230

    Google Scholar 

  • Marchessault RH, Deslandes Y (1979) Fine structure of (1 → 3)-β-D-glucans: curdlan and paramylon. Carbohydr Res 75:231–242

    CAS  Google Scholar 

  • McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1 → 3)-β-d-glucans. Appl Microbiol Biotechnol 68:163–173

    PubMed  CAS  Google Scholar 

  • Melendez-Hevia E, Waddell TG, Shelton ED (1993) Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochem J 295:477–483

    PubMed  CAS  Google Scholar 

  • Mitchell AJ (1988) Second derivative F.t.-i.r. spectra of celluloses I and II and related mono- and oligo-saccharides. Carbohydr Res 173:185–195

    Google Scholar 

  • Miyoshi K, Uezu K, Sakurai K, Shinkai S (2004) Proposal of a new hydrogen-bonding form to maintain curdlan triple. Chem Biodivers 1:916–924

    PubMed  CAS  Google Scholar 

  • Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ (2005) Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol 80:845–860

    CAS  Google Scholar 

  • Nakata M, Kawaguchi T, Kodama Y, Konno A (1998) Characterization of curdlan in aqueous sodium hydroxide. Polymer 39:1475–1481

    CAS  Google Scholar 

  • Navarini L, Gilli R, Gombac V, Abatangelo A, Bosco M, Toffanin R (1999) Polysaccharides from hot water extracts of roasted Coffea arabica beans: isolation and characterization. Carbohydr Polym 40:71–81

    CAS  Google Scholar 

  • Newburn E, Lacy R, Christie TM (1971) The morphology and size of extracellular polysaccharide from oral streptococci. Arch Oral Biol 16:863–872

    Google Scholar 

  • Nikuni Z (1978) Studies on starch granules. Starch-Starke 30:105–111

    CAS  Google Scholar 

  • Nilsson M, Saulnier L, Andersson R, Åman PM (1996) Water unextractable polysaccharides from three milling fractions of rye grain. Carbohydr Polym 30: 229–237

    CAS  Google Scholar 

  • Nilsson M, Andersson R, Andersson RE, Autio K, Åman PM (2000) Heterogeneity in a water-extractable rye arabinoxylan with a low degree of disubstitution. Carbohydr Polym 41:397–405

    CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    PubMed  CAS  Google Scholar 

  • Okada K, Yoneyama M, Mandai T, Aga H, Sakai S, Ichikawa T (1990) Digestion and fermentation of pullulan. Nippon Eiyo Shokoryo Gakkaishi 43:23–29

    CAS  Google Scholar 

  • Okuyama K, Otsubo A, Fukuzawa Y, Ozawa M, Harada T, Kasai N (1991) Single-helical structure of native curdlan and its aggregation state. J Carbohydr Chem 10:645–656

    CAS  Google Scholar 

  • Peat S, Whelan WJ, Thomas GJ (1952) Evidence of multiple branching in waxy maize starch. J Chem Soc Chem Commun, 4546–4548

    Google Scholar 

  • Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch-Stärke 62:389–420

    Google Scholar 

  • Petrov PT, Shingel KI, Scripko AD, Tsarenkov VM (2002) Biosynthesis of pullulan by Aureobasidium pullulans strain BMP-97. Biotekhnologiya 1:36–48

    Google Scholar 

  • Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fibre formation. Prog Biopolym Sci 34:641–678

    CAS  Google Scholar 

  • Powell DA (1979) Structure, solution properties and biological interactions of some extracellular polysaccharides. In: Berkeley RCW, Gooday GW, Ellwood DC (eds) Microbial polysaccharides and polysaccharases. Academic, London, pp 117–160

    Google Scholar 

  • Prehn P (2002) Hyaluronan. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide I. Wiley-VCH, Weinheim, p 379

    Google Scholar 

  • Ralet M-C, Bonnin E, Thibault J-F (2002) Pectines. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide II. Wiley-VCH, Weinheim, p 345

    Google Scholar 

  • Rao MVSSTS, Muralikrishna G (2001) Non-starch polysaccharides and bound phenolic acids from native and malted finger millet (Ragi, Eleusine coracana, Indaf - 15). Food Chem 72:187–192

    CAS  Google Scholar 

  • Rau U (2002) Schizophyllan. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide II. Wiley-VCH, Weinheim, p 61

    Google Scholar 

  • Rau U, Müller R-J, Cordes K, Klein J (1990) Process and molecular data of branched 1,3-d-glucans in comparison with Xanthan. Bioprocess Eng 5:89–93

    CAS  Google Scholar 

  • Rees DA (1970) Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. Adv Carbohydr Chem Biochem 24:267–332

    Google Scholar 

  • Reid JSG, Edwards ME (1995) Galactomannans and other cell wall storage polysaccharides in seeds. In: Stephen AM (ed) Food polysaccharides and their applications. Dekker, New York, pp 155–186

    Google Scholar 

  • Rhee S-K, Song K-B, Kim C-H, Park B-S, Jang E-K, Jang K-H (2002) Levan. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide I. Wiley-VCH, Weinheim, p 351

    Google Scholar 

  • Rioux L-E, Turgeon S, Baeulieu M (2010) Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry 71:1586–1595

    PubMed  CAS  Google Scholar 

  • Roberts GAF (1992) Chitin chemistry. Macmillan, London, p 185

    Google Scholar 

  • Rodén L (1968) The protein-carbohydrate linkages of acid mucopolysaccharides. In: Quintarelli G (ed) Chemical physiology of mucopolysaccharides, vol 1968. J & A Churchill Ltd., London, pp 17–32

    Google Scholar 

  • Rodgers NE (1973) Scleroglucan. In: Whistler RL, BeMiller JN (eds) Industrial gums, 2nd edn. Academic, New York, pp 499–511

    Google Scholar 

  • Roukas T, Montzouridpu F (2001) Effect of aeration rate on pullulan production and fermentation broth rheological properties in an airlift reactor. J Chem Technol Biot 76:371–376

    CAS  Google Scholar 

  • Sabra W, Deckewer W-D (2005) Alginate – a polysaccharide of industrial interest and diverse biological functions. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Dekker, New York, p 515

    Google Scholar 

  • Sakurai K, Uezu K, Numata M, Hasegawa T, Li C, Kaneko K, Shinkai S (2005) β-1,3-Glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles. Chem Commun, 35:4383–4398

    Google Scholar 

  • Samuelsen AB, Lund I, Djahromi JM, Paulsen BS, Wold JK, Knutsen SH (1999a) Structural features and anti-complementary activity of some heteroxylan polysaccharide fractions from the seeds of Plantago major L.. Carbohydr Polym 38:133–143

    CAS  Google Scholar 

  • Samuelsen AB, Cohen EH, Paulsen BS, Brull LP, Thomas-Oates JE (1999b) Structural studies of a heteroxylan from Plantago major L. seeds by partial hydrolysis, HPAEC-PAD, methylation and GC–MS, ESMS and ESMS/MS. Carbohydr Res 315:312–318

    PubMed  CAS  Google Scholar 

  • Saulnier L, Marot C, Chanliaud E, Thibault J-F (1995) Cell wall polysaccharide interactions in maize bran. Carbohydr Polym 26:279–287

    CAS  Google Scholar 

  • Schooneveld-Bergmans MEF, Hopman AMCP, Beldman G, Voragen AGJ (1998) Extraction and partial characterization of feruloylated glucuronoarabinoxylans from wheat bran. Carbohydr Polym 35:39–47

    CAS  Google Scholar 

  • Schooneveld-Bergmans MEF, Beldman G, Voragen AGJ (1999) Structural features of (glucurono)arabinoxylans extracted from wheat bran by barium hydroxide. J Cereal Sci 29:63–75

    CAS  Google Scholar 

  • Scott JE, Heatley F (1999) Hyaluronan forms specific stable tertiary structures in aqueous solution: a 13C NMR study. PNAS 96:4850–4855

    PubMed  CAS  Google Scholar 

  • Senti FR, Hellmann NN, Ludwig NH, Babcock GE, Tobin R, Glass CA, Lamberts BL (1955) Viscosity, sedimentation, and light-scattering properties of fraction of an acid-hydrolyzed dextran. J Polym Sci 17:527–546

    CAS  Google Scholar 

  • Seymour FR, Slodki ME, Plattner RD, Jeanes A (1977) Six unusual dextrans: methylation structural analysis by combined g.l.c.—m.s. of per-O-acetyl-aldononitriles. Carbohydr Res 53:153–166

    CAS  Google Scholar 

  • Seymour FR, Chen ECM, Bishop SH (1979) Methylation structural analysis of unusual dextrans by combined gas-liquid chromatography-mass spectrometry. Carbohydr Res 68:113

    CAS  Google Scholar 

  • Sharma BR, Naresh L, Dhuldhoya NC, Merchant SU, Merchant UC (2006) An overview on Pectins. Times Food Process J 4:44–51

    Google Scholar 

  • Shimamura A, Tsumori H, Mukasa H (1982) Purification and properties of Streptococcus mutans extracellular glucosyltransferase. Biochim Biophys Acta 702:72

    PubMed  CAS  Google Scholar 

  • Shingel KI (2004) Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide pullulan. Carbohydr Res 339: 447–460

    PubMed  CAS  Google Scholar 

  • Shogren RL (1998) Starch: properties and materials applications. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 30–46

    Google Scholar 

  • Singh V, Srivastava V, Pandey M, Esthi R, Sanghi R (2003) Ipomoea turpethum seeds: a potential source of commercial gum. Carbohydr Polym 51:357–359

    CAS  Google Scholar 

  • Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531

    CAS  Google Scholar 

  • Slodki ME, England RE, Plattner RD, Dick WE (1986) Methylation analyses of NRRL dextrans by capillary gas-liquid chromatography. Carbohydr Res 156: 199–206

    CAS  Google Scholar 

  • Sowa W, Blackwood AC, Adams GA (1963) Neutral extracellular glucan of Pullularia pullulans (de Bary) Berkhout. Can J Chem 41:2314–2319

    CAS  Google Scholar 

  • Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M (2005) Starches from different botanical sources I: contribution of amylopectin fine structure to thermal properties and enzymes digestibility. Carbohydr Polym 60:529–538

    CAS  Google Scholar 

  • Srivastava M, Kapoor VP (2005) Seed galactomannans: an overview. Chem Biodivers 2:295–317

    PubMed  CAS  Google Scholar 

  • Stephen AM (1983) Other plant polysaccharides. In: Aspinall GO (ed) The polysaccharides, vol 2. Academic, New York, pp 97–193

    Google Scholar 

  • Stokke BT, Smidsrød O, Bruheim P, Sjåk-Bræk G (1991) Distribution of uronate residues in alginate chains in relation to alginate gelling properties. Macomolecules 24:4637–4640

    CAS  Google Scholar 

  • Takeo K, Tokumura A, Kuge T (1973) Complexes of starch and its related materials with organic compounds. X. X-ray diffraction of amylose-fatty acid complexes. Starch/Stärke 35:357–362

    Google Scholar 

  • Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32: 1516–1526

    CAS  Google Scholar 

  • Taylor C, Cheetham NWH, Walker GJ (1985) Application of high-performance liquid chromatography to a study of branching in dextrans. Carbohydr Res 137:1–12

    CAS  Google Scholar 

  • Teleman A, Tenkanen M, Jacobs A, Dahlman O (2002) Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech. Carbohydr Res 337:373–377

    PubMed  CAS  Google Scholar 

  • Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476

    PubMed  Google Scholar 

  • Tester RF, Karkalas J, Qi X (2004) Starch-composition, fine structure and architecture. J Cereal Chem 39: 151–165

    CAS  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms, Springer series in wood science. Springer, Berlin, 2150 p

    Google Scholar 

  • VanCleve JW, Schaefer WC, Rist CE (1956) The Structure of NRRL B-512 Dextran. Methylation Studies. J AmChem Soc 78:4435

    CAS  Google Scholar 

  • Van de Velde F, De Ruiter GA (2002) Carrageenan. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide II. Wiley-VCH, Weinheim, p 245

    Google Scholar 

  • Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stabil 59:93–99

    CAS  Google Scholar 

  • Vignon MR, Gey C (1998) Isolation, 1H and 13C NMR studies of (4-O-methyl-image-glucurono)-image-xylans from luffa fruit fibres, jute bast fibres and mucilage of quince tree seeds. Carbohydr Res 307: 107–111

    CAS  Google Scholar 

  • Vincken J-P, Schols HA, Oomen RJFJ, McCann MC, Ulvsko P, Voragen AGJ, Visser RGF (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789

    PubMed  CAS  Google Scholar 

  • Vinkx CJA, Stevens I, Gruppen H, Grobet PJ, Delcour JA (1995) Physico-chemical and functional properties of rye nonstarch polysaccharides. VI. Variability in the structure of water-unextractable arabinoxylans. Cereal Chem 72:411–418

    CAS  Google Scholar 

  • Vollmer W, Bertsche U (2008) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta 1778:1714–1734

    PubMed  CAS  Google Scholar 

  • Voragen AGJ, Schols HA, Visser R (eds) (2003) Advances in pectin and pectinase research. Kluwer, Dordrecht

    Google Scholar 

  • Wada M, Heux L, Isogai A, Nishiyama Y, Chanzy H, Sugiyama J (2001) Improved structural data of cellulose III prepared in supercritical ammonia. Macromolecules 34:1237–1243

    CAS  Google Scholar 

  • Wallenfels K, Keilich G, Bechtler G, Freudenberger D (1965) Investigations on pullulan. IV. Resolution of structural problems using physical, chemical and enzymatic methods. Biochem Z 341:433–450

    CAS  Google Scholar 

  • Wang Y, McNeil B (1996) Scleroglucan. Crit Rev Biotechnol 16:185–215

    PubMed  Google Scholar 

  • Watherhouse AL, Chatterton NJ (1993) Glossary of fructan terms. In: Suzuki M, Chatterton NJ (eds) Science and technology of fructans. CRC, Boca Raton, FL, pp 2–7

    Google Scholar 

  • Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, DeAngelis PL, Weiggel PH, Brown S (2005) Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71:3747–3752

    PubMed  CAS  Google Scholar 

  • Wiley BJ, Ball DH, Arcidiacono SM, Sousa S, Mayer JM, Kaplan DL (1993) Control of molecular weight distribution of the biopolymer pullulan produced by Aureobasidium pullulans. J Environ Polym Degrad 1:3–9

    CAS  Google Scholar 

  • Willats WGT, Knox JP, Mikkelsen JD (2005) Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Techol 17:97–104

    Google Scholar 

  • Wood PJ, Weisz J, Blackwell BA (1994) Structural studies of (1 → 3)(1 → 4)-β-d-glucans by 13C-NMR and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cereal Chem 71: 301–307

    CAS  Google Scholar 

  • Yanaki T, Norisuye T (1983) Triple helix and random coil scleroglucan in dilute solution. Polym J 15:389–396

    CAS  Google Scholar 

  • Yanaki T, Kojima T, Norisuye T (1981) Triple helix of scleroglucan in dilute aqueous sodium hydroxide. Polym J 13:1135–1143

    CAS  Google Scholar 

  • Yang B, Yu G, Zhao X, Ren W, Jiao G, Fangg L, Wang Y, Du G, Tiller C, Girouard G, Barrow CJ, Ewart HS, Zhang J (2011) Structural characterization and bioactivities of hybrid carrageenan-like sulphated galactan from red alga Furcellaria lumbricalis. Food Chem 124: 50–57

    CAS  Google Scholar 

  • Zhang H, Yoshimura M, Nishinari K, Williams MAK, Foster TJ, Norton IT (2001) Gelation behaviour of konjac glucomannan with different molecular weights. Biopolymers 59:38–50

    PubMed  CAS  Google Scholar 

  • Zobel HF (1988) Starch crystal transformation and their industrial importance. Starch-Starke 40:1–7

    CAS  Google Scholar 

  • Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heinze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Heinze, T., Petzold-Welcke, K., van Dam, J.E.G. (2012). Polysaccharides: Molecular and Supramolecular Structures. Terminology. In: Navard, P. (eds) The European Polysaccharide Network of Excellence (EPNOE). Springer, Vienna. https://doi.org/10.1007/978-3-7091-0421-7_3

Download citation

Publish with us

Policies and ethics