Skip to main content

Das Internet of Production als Fundament der Datenverwertung in der Produktion

Herausforderungen und Lösungsansätze des datengetriebenen Erkenntnisgewinns

  • Chapter
  • First Online:
Monetarisierung von technischen Daten

Zusammenfassung

Das Internet of Things entfaltet erst durch die Überwindung von bestehenden Produkt- und Industriegrenzen sein volles ökonomisches Potenzial. Trotzdem werden Cyberphysische Systeme in der Forschung bisher oftmals isoliert betrachtet. Der Begriff des Internet of Production (IoP) steht für die Vision eines übergreifenden Austauschs von Daten und Informationen zwischen Produktentwicklung, Produktion und Nutzungsphase – über bestehende Organisationsgrenzen hinaus. Die Realisierung des IoP ist mit Herausforderungen im Bereich der datengetriebenen Modellierung sowie der Infrastruktur verbunden. In diesem Buchbeitrag werden die bestehenden Herausforderungen erläutert und Lösungsansätze skizziert. Der Schwerpunkt liegt auf der datengetriebenen Modellierung. Im Speziellen wird die Problematik des Lernens von kausalen Zusammenhängen, die Interpretierbarkeit von Machine-Learning-Modellen sowie die Integration von Domänenwissen in Lernalgorithmen diskutiert. Abschließend werden zwei Anwendungsbeispiele des „Digital Material Shadows“ vorgestellt. Diese veranschaulichen wie mithilfe von Machine Learning Erkenntnisse über den Materialzustand eines Werkstücks gewonnen werden können. Ziel dieser Digital Material Shadows ist es, langfristig Fertigungsprozesse adaptiv an die individuellen Materialeigenschaften des vorliegenden Werkstücks bzw. Rohmaterials anzupassen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Niyato D, Lu X, Wang P, Kim D, Han Z (2016) Economics of internet of things: an information market approach. IEEE Wireless Commun 23(4):136–145. https://doi.org/10.1109/MWC.2016.7553037

  2. Wortmann F, Flüchter K (2015) Internet of things. Bus Inf Syst Eng 57(3):221–224. https://doi.org/10.1007/s12599-015-0383-3

    Article  Google Scholar 

  3. Côrte-Real N, Ruivo P, Oliveira T (2020) Leveraging internet of things and big data analytics initiatives in European and American firms: is data quality a way to extract business value? Inf Manag 57(1):103141. https://doi.org/10.1016/j.im.2019.01.003

    Article  Google Scholar 

  4. Porter ME, Heppelmann JE (2014) How smart, connected products are transforming competition. Harv Bus Rev 92(11):64–88

    Google Scholar 

  5. Manyika J, Chui M, Bisson P, Woetzel J, Dobbs R, Bughin J, Aharon D (2015) The internet of things: mapping the value beyong the hype. Full Report. McKinsey Global Institute. https://www.mckinsey.de/business-functions/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world. Zugegriffen: 30. Nov. 2020

  6. Gleim L, Pennekamp J, Liebenberg M, Buchsbaum M, Niemietz P, Knape S, Epple A, Storms S, Trauth D, Bergs T, Brecher C, Decker S, Lakemeyer G, Wehrle K (2020) FactDAG: formalizing data interoperability in an internet of production. IEEE Internet Things J 7(4):3243–3253. https://doi.org/10.1109/jiot.2020.2966402

    Article  Google Scholar 

  7. Pennekamp J, Glebke R, Henze M, Meisen T, Quix C, Hai R, Gleim L, Niemietz P, Rudack M, Knape S, Epple A, Trauth D, Vroomen U, Bergs T, Brecher C, Buhrig-Polaczek A, Jarke M, Wehrle K (2019) Towards an infrastructure enabling the internet of production. In: 2019 IEEE international conference on industrial cyber physical systems (ICPS). IEEE, S 31–37

    Google Scholar 

  8. Niemietz P, Pennekamp J, Kunze I, Trauth D, Wehrle K, Bergs T (2020) Stamping process modelling in an internet of production. Procedia Manuf 49:61–68. https://doi.org/10.1016/j.promfg.2020.06.012

    Article  Google Scholar 

  9. Hoffmann JB, Heimes P, Senel S (2019) IoT platforms for the internet of production. IEEE Internet Things J 6(3):4098–4105. https://doi.org/10.1109/jiot.2018.2875594

    Article  Google Scholar 

  10. Gao R, Wang L, Teti R, Dornfeld D, Kumara S, Mori M, Helu M (2015) Cloud-enabled prognosis for manufacturing. CIRP Ann 64(2):749–772. https://doi.org/10.1016/j.cirp.2015.05.011

    Article  Google Scholar 

  11. Liebenberg M, Jarke M (2020) Information systems engineering with digital shadows: concept and case studies. In: Dustdar S, Yu E, Salinesi C, Rieu D, Pant V (Hrsg) Advanced information systems engineering, Bd 12127. Springer International Publishing, Cham, S 70–84

    Google Scholar 

  12. Jones D, Snider C, Nassehi A, Yon J, Hicks B (2020) Characterising the digital twin: a systematic literature review. CIRP J Manuf Sci Technol 29:36–52. https://doi.org/10.1016/j.cirpj.2020.02.002

    Article  Google Scholar 

  13. Lee J, Lapira E, Bagheri B, Kao H-a (2013) Recent advances and trends in predictive manufacturing systems in big data environment. Manuf Lett 1(1):38–41. https://doi.org/10.1016/j.mfglet.2013.09.005

    Article  Google Scholar 

  14. Kritzinger W, Karner M, Traar G, Henjes J, Sihn W (2018) Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11):1016–1022. https://doi.org/10.1016/j.ifacol.2018.08.474

    Article  Google Scholar 

  15. Bauernhansl T, Hartleif S, Felix T (2018) The digital shadow of production – a concept for the effective and efficient information supply in dynamic industrial environments. Procedia CIRP 72:69–74. https://doi.org/10.1016/j.procir.2018.03.188

    Article  Google Scholar 

  16. Schuh G, Häfner C, Hopmann C, Rumpe B, Brockmann M, Wortmann A, Maibaum J, Dalibor M, Bibow P, Sapel P, Kröger M (2020) Effizientere Produktion mit Digitalen Schatten. ZWF 115(special):105–107. https://doi.org/10.3139/104.112339

  17. Bergs T, Niemietz P, Kaufman T, Trauth D (2020) Punch-to-punch variations in stamping processes. In: 2020 IEEE 18th world symposium on applied machine intelligence and informatics (SAMI). IEEE, S 213–218

    Google Scholar 

  18. Spirtes P (2010) Introduction to causal inference. J Mach Learn Res 11(54):1643–1662

    Google Scholar 

  19. Pearl J (2019) The seven tools of causal inference, with reflections on machine learning. Commun ACM 62(3):54–60. https://doi.org/10.1145/3241036

    Article  Google Scholar 

  20. Schölkopf B (2019) Causality for machine learning. https://arxiv.org/abs/1911.10500

  21. Peters J, Janzing D, Schölkopf B (2017) Elements of causal inference. Foundations and learning algorithms. Adaptive computation and machine learning. MIT Press, Cambridge

    MATH  Google Scholar 

  22. Wuest T, Weimer D, Irgens C, Thoben K-D (2016) Machine learning in manufacturing: advantages, challenges, and applications. Prod Manuf Res 4(1):23–45. https://doi.org/10.1080/21693277.2016.1192517

    Article  Google Scholar 

  23. Pearl J (2009) Causal inference in statistics: an overview. Statist Surv 3:96–146. https://doi.org/10.1214/09-ss057

    Article  MathSciNet  MATH  Google Scholar 

  24. Spirtes P, Zhang K (2016) Causal discovery and inference: concepts and recent methodological advances. Appl Inform (Berl) 3:3. https://doi.org/10.1186/s40535-016-0018-x

    Article  Google Scholar 

  25. Tian J, Pearl J (2001) Causal discovery from changes. In: Proceedings of the seventeenth conference on uncertainty in artificial intelligence, August, 2001, S 512–521

    Google Scholar 

  26. Pearl J (1995) Causal diagrams for empirical research. Biometrika 82(4):669. https://doi.org/10.2307/2337329

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang J (2007) Generalized do-calculus with testable causal assumptions. In: Proceedings of the eleventh international conference on artificial intelligence and statistics, S 667–674

    Google Scholar 

  28. Guo R, Cheng L, Li J, Hahn PR, Liu H (2020) A survey of learning causality with data. ACM Comput Surv 53(4):1–37. https://doi.org/10.1145/3397269

    Article  Google Scholar 

  29. Lopez-Paz D, Nishihara R, Chintala S, Scholkopf B, Bottou L (2017) Discovering causal signals in images. In: Proceedings IEEE conference on computer vision and pattern recognition (CVPR) 2017. IEEE, S 58–66

    Google Scholar 

  30. Roscher R, Bohn B, Duarte MF, Garcke J (2020) Explainable machine learning for scientific insights and discoveries. IEEE Access 8:42200–42216. https://doi.org/10.1109/access.2020.2976199

    Article  Google Scholar 

  31. Dosilovic FK, Brcic M, Hlupic N (2018) Explainable artificial intelligence: a survey. In: 2018 41st international convention on information and communication technology, electronics and microelectronics (MIPRO), Opatija, Kroatien, 21–25 Mai 2018. IEEE, S 210–215

    Google Scholar 

  32. Chattopadhyay A, Manupriya P, Sarkar A, Balasubramanian VN (2019) Neural network attributions: a causal perspective. In: Proceedings of the 36th international conference on machine learning, Long Beach, California, PMLR 97, 2019

    Google Scholar 

  33. Barredo Arrieta A, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, Garcia S, Gil-Lopez S, Molina D, Benjamins R, Chatila R, Herrera F (2020) Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fusion 58:82–115. https://doi.org/10.1016/j.inffus.2019.12.012

    Article  Google Scholar 

  34. Christoph Molnar Interpretable Machine Learning. https://christophm.github.io/interpretable-ml-book/

  35. Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B (2019) Definitions, methods, and applications in interpretable machine learning. Proc Natl Acad Sci USA 116(44):22071–22080. https://doi.org/10.1073/pnas.1900654116

    Article  MathSciNet  MATH  Google Scholar 

  36. Kapteyn MG, Knezevic DJ, Huynh DBP, Tran M, Willcox KE (2020) Data-driven physics-based digital twins via a library of component-based reduced-order models. Int J Numer Methods Eng. https://doi.org/10.1002/nme.6423

    Article  Google Scholar 

  37. van Rueden L, Mayer S, Beckh K, Georgiev B, Giesselbach S, Heese R, Kirsch B, Pfrommer J, Pick, Annika, Ramamurthy, Rajkumar, Walczak M, Garcke J, Bauckhage C, Schuecker, Jannis (2020) Informed machine learning – a taxonomy and survey of integrating knowledge into learning systems. https://arxiv.org/abs/1903.12394. Zugegriffen: 30. Okt. 2020

  38. Teng T-H, Tan A-H, Zurada JM (2015) Self-organizing neural networks integrating domain knowledge and reinforcement learning. IEEE Trans Neural Netw Learn Syst 26(5):889–902. https://doi.org/10.1109/tnnls.2014.2327636

    Article  MathSciNet  Google Scholar 

  39. Koller D, Friedman N (2009) Probabilistic graphical models. Principles and techniques. Adaptive computation and machine learning. MIT Press, Cambridge

    Google Scholar 

  40. Pennekamp J, Henze M, Schmidt S, Niemietz P, Fey M, Trauth D, Bergs T, Brecher C, Wehrle K (2019) Dataflow challenges in an internet of production. In: Cavallaro L, Kinder J, Holz T (Hrsg) Proceedings of the ACM workshop on cyber-physical systems security & privacy – CPS-SPC’19. ACM Press, New York, S 27–38

    Google Scholar 

  41. Glebke R, Henze M, Wehrle K, Niemietz P, Trauth D, Mattfeld MBA P, Bergs T (2019) A Case for integrated data processing in large-scale cyber-physical systems. In: Bui T (Hrsg) Proceedings of the 52nd Hawaii international conference on system sciences

    Google Scholar 

  42. Unterberg M, Niemietz P, Trauth D, Wehrle K, Bergs T (2019) In-situ material classification in sheet-metal blanking using deep convolutional neural networks. Prod Eng Res Dev 13(6):743–749. https://doi.org/10.1007/s11740-019-00928-w

    Article  Google Scholar 

  43. Eichler J (2014) Elektromagnetismus. In: Eichler J (Hrsg) Physik für das Ingenieurstudium. Springer Fachmedien Wiesbaden, Wiesbaden, S 187–246

    Google Scholar 

  44. Santa-aho S, Laitinen A, Sorsa A, Vippola M (2019) Barkhausen noise probes and modelling: a review. J Nondestruct Eval 38(4). https://doi.org/10.1007/s10921-019-0636-z

  45. Franco FA, González MFR, de Campos MF, Padovese LR (2013) Relation between magnetic Barkhausen noise and hardness for Jominy Quench tests in SAE 4140 and 6150 steels. J Nondestruct Eval 32(1):93–103. https://doi.org/10.1007/s10921-012-0162-8

    Article  Google Scholar 

  46. Klocke F, König W (2008) Fertigungsverfahren 1. Drehen, Fräsen, Bohren. Springer, Berlin

    Google Scholar 

  47. Brinksmeier E, Gläbe R, Klocke F, Lucca DA (2011) Process signatures – an alternative approach to predicting functional workpiece properties. Procedia Eng 19:44–52. https://doi.org/10.1016/j.proeng.2011.11.078

    Article  Google Scholar 

  48. Buchholz SH (2014) Bewertung des Substitutionsrisikos von Fertigungssystemen, 1. Aufl. Apprimus Wissenschaftsverlag, s. l.

    Google Scholar 

  49. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee S-I (2020) From local explanations to global understanding with explainable AI for trees. Nat Mach Intell 2(1):56–67. https://doi.org/10.1038/s42256-019-0138-9

    Article  Google Scholar 

  50. Apley DW, Zhu J (2020) Visualizing the effects of predictor variables in black box supervised learning models. J R Stat Soc B 82(4):1059–1086. https://doi.org/10.1111/rssb.12377

    Article  MathSciNet  Google Scholar 

  51. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232. https://doi.org/10.1214/aos/1013203451

    Article  MathSciNet  MATH  Google Scholar 

Download references

Danksagung

Die Autoren bedanken sich für die Förderung durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen der Exzellenzstrategie des Bundes und der Länder – EXC-2023 Internet of Production – 390621612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Becker, M., Brockmann, M., Niemietz, P., Trauth, D., Bergs, T., Brecher, C. (2021). Das Internet of Production als Fundament der Datenverwertung in der Produktion. In: Trauth, D., Bergs, T., Prinz, W. (eds) Monetarisierung von technischen Daten. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62915-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62915-4_15

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62914-7

  • Online ISBN: 978-3-662-62915-4

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics