Abstract
Evolving SNN (eSNN) are a class of SNN and also a class of ECOS (Chap. 2) where spiking neurons are created (evolved) and merged in an incremental way to capture clusters and patterns from incoming data. This gives a new quality of the SNN systems to become adaptive, fast trained and to capture meaningful patterns from the data, departing the “curse of the black box neural networks’ and the “curse of catastrophic forgetting” as manifested by some traditional ANN models (Chap. 2). The inspiration comes from the brain as the brain always evolves its structure and functionality through continuous learning. It is always evolving and forming new knowledge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
S. Thorpe, D. Fize, C. Marlot, Speed of processing in the human visual system. Nature 381(6582), 520–522 (1996)
P. Lichtsteiner, T. Delbruck, A 64 × 64 AER logarithmic temporal derivative silicon retina. Res. Microelectron. Electron. 2(1), 202–205 (2005). https://doi.org/10.1109/rme.2005.1542972
T. Delbruck, jAER open source project (2007). http://jaer.wiki.sourceforge.net
S. Soltic, N. Kasabov, Knowledge extract ion from evolving spiking neural networks with rank order population coding. Int. J. Neural Syst. 20(6), 437–445 (2010)
N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach, 2nd edn. (Springer, 2007) (1st edn., 2002)
S. Wysoski, L. Benuskova, N. Kasabov, Evolving spiking neural networks for audiovisual information processing. Neural Netw. 23(7), 819–835 (2010)
S.M. Bohte, H. La Poutre, J.N. Kok, Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans. Neural Networks 13(2), 426–435 (2002)
S. Schliebs, N. Kasabov, Evolving Spiking Neural Networks: A Survey, Evolving Systems (Springer, 2012)
S. Thorpe, J. Gautrais, Rank order coding. Comput. Neurosci. Trends Res. 113–119 (1998)
N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Netw. Off. J. Int. Neural Netw. Soc. 41, 188–201 (2013). https://doi.org/10.1016/j.neunet.2012.11.014
P. Tiesinga, J. Fellous, T.J. Sejnowski, Regulation of spike timing in visual cortical circuits. Nat. Rev. Neurosci. 9(2), 97–107 (2008)
E. Nichols, L.J. McDaid, N.H. Siddique, Case study on a self-organizing spiking neural network for robot navigation. Int. J. Neural Syst. 20(6), 501–508 (2010). PMID: 21117272
A. Riul Jr., D.S. dos Santos Jr, K. Wohnrath, R. Di Tommazo, A.C.P.L.F. Carvalho, F.J. Fonseca, O.N. Oliveira Jr., D.M. Taylor, L.H.C. Mattoso, An artificial taste sensor: efficient combination of sensors made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an Azobenzene-containing polymer. Langmuir 18(2002), 239–245 (2002)
Milli-Q, http://www.millipore.com/
S. Soltic, S.G. Wysoski, N. Kasabov, Evolving spiking neural networks for taste recognition, in Proceedings of the International Joint Conference on Neural Networks, IJCNN 2008 (Hong Kong, 2008), pp. 2092–2098
W. Maass, T. Natschlager, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)
H. Jaeger, H. Haas, Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science (New York, NY) 304(5667), 78–80 (2004). https://doi.org/10.1126/science.1091277
W. Maass, Liquid State Machines: Motivation, Theory, and Applications (2010) (Chapter 1)
D. Norton, D. Ventura, Improving the separability of a reservoir facilitates learning transfer, in Proceeding of the Seventh ACM Conference on Creativity and Cognition (2009), pp. 339–340
S. Schliebs, A. Mohemmed, N. Kasabov, Are probabilistic spiking neural networks suitable for reservoir computing? in International Joint Conference on Neural Networks (San Jose, USA, 2011), pp. 3156–3163
B.J. Grzyb, E. Chinellato, G.M. Wojcik, W.A. Kaminski, Which Model to use for the liquid state machine? in International Joint Conference on Neural Networks, 2009. IJCNN 2009. IEEE (2009), pp. 1018–1024
E. Goodman, D. Ventura, Spatiotemporal pattern recognition via liquid state machines, in IJCNN (2006), pp. 3848–3853
S. Schliebs, N. Nuntalid, N. Kasabov, Towards spatio-temporal pattern recognition using evolving spiking neural networks. Neural Inf. Process. Theor. Alg. 6443, 163–170 (2010). https://doi.org/10.1007/978-3-642-17537-4_21
Z. Yanduo, W. Kun, The application of liquid state machines in robot path planning. J. Comput. 4(11), 1182–1186 (2009)
H. Ju, J. Xu, A.M.J. VanDongen, Classification of musical styles using liquid state machines, in The 2010 International Joint Conference on Neural Networks (IJCNN) (2010), pp. 1–7
S. Soltic, N.K. Kasabov, Knowledge extraction from evolving spiking neural networks with rank order population coding. Int. J. Neural Syst. 20(6), 437–445 (2010)
N. Kasabov (ed.), Springer Handbook of Bio-/Neuroinformatics (Springer, 2014)
W. Maass, On the role of time and space in neural computation. Math. Found. Comput. Sci., 72–83 (1998)
N. Kasabov, Evolving connectionist systems: from neuro-fuzzy-, to spiking—and neurogenetic, in Springer Handbook of Computational Intelligence, ed. by J. Kacprzyk, W. Pedrycz (Springer, 2015), pp. 771–782
W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, 2002)
Acknowledgements
Parts of the material in this chapter have been published previously as referenced in the corresponding sections. I acknowledge the contribution of my co-authors in these publications: L. Benuskova. S. Wysoski, S. Schliebs, S. Soltic, A. Mohemmed, K. Double, N. Nuntalid, G. Indiveri.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2019 Springer-Verlag GmbH Germany, part of Springer Nature
About this chapter
Cite this chapter
Kasabov, N.K. (2019). Evolving Spiking Neural Networks. In: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence . Springer Series on Bio- and Neurosystems, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57715-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-662-57715-8_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-57713-4
Online ISBN: 978-3-662-57715-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)