Skip to main content

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 7))

Abstract

Evolving SNN (eSNN) are a class of SNN and also a class of ECOS (Chap. 2) where spiking neurons are created (evolved) and merged in an incremental way to capture clusters and patterns from incoming data. This gives a new quality of the SNN systems to become adaptive, fast trained and to capture meaningful patterns from the data, departing the “curse of the black box neural networks’ and the “curse of catastrophic forgetting” as manifested by some traditional ANN models (Chap. 2). The inspiration comes from the brain as the brain always evolves its structure and functionality through continuous learning. It is always evolving and forming new knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Thorpe, D. Fize, C. Marlot, Speed of processing in the human visual system. Nature 381(6582), 520–522 (1996)

    Article  Google Scholar 

  2. P. Lichtsteiner, T. Delbruck, A 64 × 64 AER logarithmic temporal derivative silicon retina. Res. Microelectron. Electron. 2(1), 202–205 (2005). https://doi.org/10.1109/rme.2005.1542972

    Article  Google Scholar 

  3. T. Delbruck, jAER open source project (2007). http://jaer.wiki.sourceforge.net

  4. S. Soltic, N. Kasabov, Knowledge extract ion from evolving spiking neural networks with rank order population coding. Int. J. Neural Syst. 20(6), 437–445 (2010)

    Article  Google Scholar 

  5. N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach, 2nd edn. (Springer, 2007) (1st edn., 2002)

    Google Scholar 

  6. S. Wysoski, L. Benuskova, N. Kasabov, Evolving spiking neural networks for audiovisual information processing. Neural Netw. 23(7), 819–835 (2010)

    Article  Google Scholar 

  7. S.M. Bohte, H. La Poutre, J.N. Kok, Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans. Neural Networks 13(2), 426–435 (2002)

    Article  Google Scholar 

  8. S. Schliebs, N. Kasabov, Evolving Spiking Neural Networks: A Survey, Evolving Systems (Springer, 2012)

    Google Scholar 

  9. S. Thorpe, J. Gautrais, Rank order coding. Comput. Neurosci. Trends Res. 113–119 (1998)

    Google Scholar 

  10. N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Netw. Off. J. Int. Neural Netw. Soc. 41, 188–201 (2013). https://doi.org/10.1016/j.neunet.2012.11.014

    Article  Google Scholar 

  11. P. Tiesinga, J. Fellous, T.J. Sejnowski, Regulation of spike timing in visual cortical circuits. Nat. Rev. Neurosci. 9(2), 97–107 (2008)

    Article  Google Scholar 

  12. E. Nichols, L.J. McDaid, N.H. Siddique, Case study on a self-organizing spiking neural network for robot navigation. Int. J. Neural Syst. 20(6), 501–508 (2010). PMID: 21117272

    Article  Google Scholar 

  13. A. Riul Jr., D.S. dos Santos Jr, K. Wohnrath, R. Di Tommazo, A.C.P.L.F. Carvalho, F.J. Fonseca, O.N. Oliveira Jr., D.M. Taylor, L.H.C. Mattoso, An artificial taste sensor: efficient combination of sensors made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an Azobenzene-containing polymer. Langmuir 18(2002), 239–245 (2002)

    Article  Google Scholar 

  14. Milli-Q, http://www.millipore.com/

  15. S. Soltic, S.G. Wysoski, N. Kasabov, Evolving spiking neural networks for taste recognition, in Proceedings of the International Joint Conference on Neural Networks, IJCNN 2008 (Hong Kong, 2008), pp. 2092–2098

    Google Scholar 

  16. W. Maass, T. Natschlager, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  Google Scholar 

  17. H. Jaeger, H. Haas, Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science (New York, NY) 304(5667), 78–80 (2004). https://doi.org/10.1126/science.1091277

    Article  Google Scholar 

  18. W. Maass, Liquid State Machines: Motivation, Theory, and Applications (2010) (Chapter 1)

    Google Scholar 

  19. D. Norton, D. Ventura, Improving the separability of a reservoir facilitates learning transfer, in Proceeding of the Seventh ACM Conference on Creativity and Cognition (2009), pp. 339–340

    Google Scholar 

  20. S. Schliebs, A. Mohemmed, N. Kasabov, Are probabilistic spiking neural networks suitable for reservoir computing? in International Joint Conference on Neural Networks (San Jose, USA, 2011), pp. 3156–3163

    Google Scholar 

  21. B.J. Grzyb, E. Chinellato, G.M. Wojcik, W.A. Kaminski, Which Model to use for the liquid state machine? in International Joint Conference on Neural Networks, 2009. IJCNN 2009. IEEE (2009), pp. 1018–1024

    Google Scholar 

  22. E. Goodman, D. Ventura, Spatiotemporal pattern recognition via liquid state machines, in IJCNN (2006), pp. 3848–3853

    Google Scholar 

  23. S. Schliebs, N. Nuntalid, N. Kasabov, Towards spatio-temporal pattern recognition using evolving spiking neural networks. Neural Inf. Process. Theor. Alg. 6443, 163–170 (2010). https://doi.org/10.1007/978-3-642-17537-4_21

    Article  Google Scholar 

  24. Z. Yanduo, W. Kun, The application of liquid state machines in robot path planning. J. Comput. 4(11), 1182–1186 (2009)

    Google Scholar 

  25. H. Ju, J. Xu, A.M.J. VanDongen, Classification of musical styles using liquid state machines, in The 2010 International Joint Conference on Neural Networks (IJCNN) (2010), pp. 1–7

    Google Scholar 

  26. S. Soltic, N.K. Kasabov, Knowledge extraction from evolving spiking neural networks with rank order population coding. Int. J. Neural Syst. 20(6), 437–445 (2010)

    Article  Google Scholar 

  27. N. Kasabov (ed.), Springer Handbook of Bio-/Neuroinformatics (Springer, 2014)

    Google Scholar 

  28. W. Maass, On the role of time and space in neural computation. Math. Found. Comput. Sci., 72–83 (1998)

    Google Scholar 

  29. N. Kasabov, Evolving connectionist systems: from neuro-fuzzy-, to spiking—and neurogenetic, in Springer Handbook of Computational Intelligence, ed. by J. Kacprzyk, W. Pedrycz (Springer, 2015), pp. 771–782

    Google Scholar 

  30. W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, 2002)

    Google Scholar 

Download references

Acknowledgements

Parts of the material in this chapter have been published previously as referenced in the corresponding sections. I acknowledge the contribution of my co-authors in these publications: L. Benuskova. S. Wysoski, S. Schliebs, S. Soltic, A. Mohemmed, K. Double, N. Nuntalid, G. Indiveri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola K. Kasabov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasabov, N.K. (2019). Evolving Spiking Neural Networks. In: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence . Springer Series on Bio- and Neurosystems, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57715-8_5

Download citation

Publish with us

Policies and ethics