Skip to main content

Vacuum Arc Equipment for Mass Production of ta-C Coatings

  • Chapter
  • First Online:
Tetrahedrally Bonded Amorphous Carbon Films I

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 263))

Abstract

The outstanding tribological properties of ta-C and partially also of hard a-C films (see Vol. II, Part VII) suggest their broad application as wear protecting and friction reducing coatings. The realization of the corresponding mass production depends on the basic problem of any thin film technology, the extra costs in comparison to the gained performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.L. Boxman, V.N. Zhitomirsky, Vacuum arc deposition devices. Rev. Sci. Instrum. 77, 021101 (2006)

    Article  Google Scholar 

  2. J.E. Daalder, Energy dissipation in the cathode of a vacuum arc. J. Phys. D 10, 2225–2234 (1977)

    Article  Google Scholar 

  3. W. Grimm, V. Weihnacht, Gas phase modification of superhard carbon coatings deposited by pulsed dc-arc-process. Plasma Processes Polym. 6, S433–S437 (2009)

    Article  Google Scholar 

  4. J.-K. Kim, K.-R. Lee, K.Y. Eun, K.-H. Chung, Effect of magnetic field structure near cathode on the arc spot stability of filtered vacuum arc source of graphite. Surf. Coat. Technol. 124, 135–141 (2000)

    Article  Google Scholar 

  5. Th Stucky, U. Baier, C.-F. Meyer, H.-J. Scheibe, B. Schultrich, Großflächenbeschichtung mit superharten Kohlenstoff. (= Large-area deposition with superhard carbon). Vakuum Forschung Praxis 15, 299–304 (2003)

    Google Scholar 

  6. D. Schneider, B. Schultrich, Elastic modulus: a suitable quantity for characterization of thin films. Surf. Coat. Technol. 98, 962–970 (1998)

    Article  Google Scholar 

  7. D. Schneider, P. Siemroth, T. Schülke, J. Berthold, B. Schultrich, H.-H. Schneider, R. Ohr, B. Petereit, H. Hilgers, Quality control of ultra-thin and super-hard coatings by laser-acoustics. Surf. Coat. Technol. 153, 252–260 (2002)

    Article  Google Scholar 

  8. B. Schultrich, S. Völlmar, D. Römer, Process simulation of industrial vacuum arc deposition, in Proceedings of International Conference the Coatings in Manufacturing Engineering, Erlangen, ed. by M. Geiger (Meisenbach, Bamberg, 2004), pp. 309–318

    Google Scholar 

  9. R. Tietema, Large scale industrial coating: application and systems, in Films and Coatings: Technology and Recent Developments, ed. by D. Cameron (Elsevier, Amsterdam, 2014), pp. 519–561

    Google Scholar 

  10. J. Vetter, W. Burgmer, A.J. Perry, Arc-enhanced glow discharge in vacuum arc machines. Surf. Coat. Technol. 59, 152–155 (1993)

    Article  Google Scholar 

  11. J. Vetter, A.J. Perry, Advances in cathodic arc technology using electrons extracted from the vacuum arc. Surf. Coat. Technol. 61, 305–309 (1993)

    Article  Google Scholar 

  12. C. Wierhake, Inbetriebnahme und Erprobung einer neuartigen Hochratekohlenstoffquelle. (= Implementing and testing of a new high-rate carbon source). Diploma thesis, University Applied Science Dortmund, 2004

    Google Scholar 

  13. V. Weihnacht, B. Schultrich, Verfahren zur Bearbeitung von Oberflächen mit einer Beschichtung aus hartem Kohlenstoff. (Method for treating surfaces of a hard carbon coating.) DE 102006010916 (1. 3. 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Explanations

Explanations

1.1 E1 Deposition Rate on the Central Axis (for 13.10, 13.13)

The angular variation of the plasma beam may be described by a coskϑ distribution. The exponent k is (for k ≥ 1) approximately related to the FWHM value Δϑ, i.e. cosk (Δϑ/2) = 0.5, by k ≈ (132°/Δϑ)2. Narrower distributions correspond to larger k values (Fig. 9.35).

The plasma sources may be rotationally symmetric distributed over the cathode surface. The substrate is parallel to the cathode in the distance dc−s. The local deposition rate w = dh/dt is related to the particle flux density j = dJ/dA and the particle density nf in the film by w = j/nf. The particle flux dJ from an areal element dAc on the cathode to an areal element dA on the parallel substrate in the direction ϑ is given by

$$ dJ = \frac{k + 1}{2\pi }\frac{{J_{0} }}{{A_{c} }}{ \cos }^{k} \vartheta \,d\Omega \,dA_{c} $$
(13.18)

where J0 denotes the total particle flux from the cathode. dΩ represents the solid angle, the element dA in the distance r = d/cosϑ is seen from dAc: dΩ = cosϑ dA/r2 = cos3ϑ dA/d 2c−s .

The angle ϑ is related to the axial distance R by tgϑ = R/dc−s, cosϑ = 1/(1 + (R/dc−s)2)1/2 (Fig. 13.32).

Fig. 13.32
figure 32

Geometric relations between the direction of the particle beam and the deposition on a parallel substrate

Uniform source distribution on a circular area

The plasma sources may be uniformly distributed over an circle with radius R0. The total particle flux from all elements on the active cathode area is given by

$$ \begin{aligned} J & = \frac{k + 1}{2\pi }\frac{{J_{0} }}{{\pi R_{0}^{2} }}\frac{1}{{d_{c - s}^{2} }}\int {dA_{c} \,{ \cos }^{k + 3} \vartheta } = \frac{k + 1}{2\pi }\frac{{J_{0} }}{{\pi R_{0}^{2} }}\frac{1}{{d_{c - s}^{2} }}2\pi \int\limits_{0}^{{R_{0} }} {dR\frac{R}{{\left( {1 + \left( {R/d_{c - s} } \right)^{2} } \right)^{(k + 3)/2} }}} \\ & = \frac{k + 1}{2\pi }\frac{{J_{0} }}{{\pi R_{0}^{2} }}\frac{1}{{d_{c - s}^{2} }}2\pi \frac{{d_{s - c}^{2} }}{k + 1}\left. {\frac{ - 1}{{\left( {1 + \left( {R/d_{c - s} } \right)^{2} } \right)^{(k + 1)/2} }}} \right|_{0}^{{R_{0} }} \\ \end{aligned} $$
(13.19)

For the deposition rate w follows

$$ w = \frac{{J_{0} }}{{n_{f} \,\pi R_{0}^{2} }}\left( {1 - \frac{1}{{\left( {1 + \left( {R_{0} /d_{c - s} } \right)^{2} } \right)^{(k + 1)/2} }}} \right) $$
(13.20)

At small distances \( {\text{d}}_{{\text{c}}\text{-}{\text{s}}} \ll {\text{R}}_{0} \), the central deposition rate does not depend on the substrate distance and is given by the emission flux density:

$$ {\text{w}} \approx {\text{J}}_{ 0} \,/\,(\uppi{\text{R}}_{0}^{2} )\;1\,/\,{\text{n}}_{\text{f}} = {\text{j}}_{ 0} \,/\,{\text{n}}_{\text{f}} \quad \left({\text{d}}_{{\text{c}} {-}{\text{s}}} \ll {\text{R}}_{ 0} \right) $$
(13.21)

At large distances \( {\text{d}}_{{\text{c}}\text{-}{\text{s}}} \gg {\text{R}}_{0} \), the rate corresponds to a point source:

$$ w = \frac{k + 1}{2\pi }\frac{1}{{n_{f} }}\frac{{J_{0} }}{{n_{f} \,d_{c - s}^{2} }} $$
(13.22)

Uniform source distribution on a ring

The plasma sources may be uniformly distributed over a ring with radius R0. The total particle flux from all elements on the active cathode areas on the radius R0 with width ΔR is given by

$$ J = \frac{k + 1}{2\pi }\frac{{J_{0} }}{{2\pi R_{0} \,\Delta R}}\frac{1}{{d_{c - s}^{2} }}\int {dA_{c} \,{ \cos }^{k + 3} \vartheta } = \frac{k + 1}{2\pi }\frac{{J_{0} }}{{2\pi R_{0} \,\Delta R}}\frac{1}{{d_{c - s}^{2} }}2\pi \,\Delta R\frac{{R_{0} }}{{\left( {1 + \left( {R_{0} /d_{s - c} } \right)^{2} } \right)^{(k + 3)/2} }} $$
(13.23)

For the deposition rate w follows

$$ w = \frac{{\left( {k + 1} \right)\,J_{0} }}{{n_{f} \,2\pi R_{0}^{2} }}\frac{{\left( {R_{0} /d_{c - s} } \right)^{2} }}{{\left( {1 + \left( {R_{0} /d_{c - s} } \right)^{2} } \right)^{(k + 3)/2} }} $$
(13.24)

The development for small distances \( {\text{d}}_{{\text{c}}\text{-}{\text{s}}} \ll {\text{R}}_{0} \) yield a central deposition rate

$$ w \approx \frac{{\left( {k + 1} \right)J_{0} }}{{n_{f} \,2\pi R_{0}^{2} }}\left( {\frac{{d_{c - s} }}{{R_{0} }}} \right)^{k + 1} $$
(13.25)

increasing with the substrate distance ~d k+1c−s . For large distances \( {\text{d}}_{{\text{c}}\text{-}{\text{s}}} \gg {\text{R}}_{0} \) the rate is described by the dependence ~1/d 2c−s for a point source (13.22), independent on the specific source distribution. The deposition rate is maximum at

$$ {\text{d}}_{{\text{c}} - {\text{s}}} \,/\,{\text{R}}_{ 0} = (({\text{k}} + 1)\,/\,2)^{1/2} $$
(13.26)

1.2 E2 Deposition Rate with Rotating Carriers (for 13.16, 13.17)

Single rotation

The substrates are attached on a uniformly rotating cylindrical carrier (radius R). The axis is parallel to the line source of length L in the distance R + dc−s from the source. Here dc−s denotes the shortest distance between the cathodic line source and the substrates. The particle flux dJ into the angular segment dϑ is described by

$$ {\text{dJ}} =\upgamma\,{ \cos }^{\text{k}}\upvartheta\,{\text{d}}\upvartheta $$
(13.27)

Only the fraction between −ϑ0 and +ϑ0 hit the cylindrical surface and is during the rotation distributed over the surface with the area 2π R L. (Edge effects are neglected.) The limiting angle ϑ0 is given by the tangent from the source to the cylinder:

$$ { \sin }\,\upvartheta_{0} = {\text{R}}\,/\,\left( {{\text{R}} + {\text{d}}_{{\text{s}} {-}{\text{c}}}} \right) $$
(13.28)

The mean particle flux density on the cylindrical carrier amounts to

$$ j = \frac{\gamma }{2\pi \,R\,L}\int\limits_{{ - \vartheta_{0} }}^{{\vartheta_{0} }} {d\vartheta \,{ \cos }^{k} \vartheta } $$
(13.29)

The mean deposition rate w = dh/dt is given by

$$ {\text{w}} = {\text{j}}\,/\,{\text{n}}_{\text{f}} $$
(13.30)

where nf denotes the particle density within the film.

In the case of immovable substrate, fixed in the distance dc−s, the particle flux is given by

$$ {\text{dJ}}_{ 0} =\upgamma\,{\text{d}}\upvartheta =\upgamma\,{\text{ds}}\,/\,{\text{d}}_{{\text{c}}\text{-}{\text{s}}} =\upgamma\,{\text{L}} \times {\text{ds}}\,/\,({\text{L}} \times {\text{d}}_{{\text{c}} {-}{\text{s}}}) =\upgamma\,{\text{dA}}\,/\,({\text{L}} \times {\text{d}}_{{\text{c}} {-}{\text{s}}}) = {\text{j}}_{ 0} \,{\text{dA}} $$
(13.31)

Hence, the ratio of the deposition rate w of rotating samples to fixed ones amounts to

$$ \frac{w}{{w_{0} }} = \frac{{d_{c - s} }}{2\pi \,R}\int\limits_{{ - \vartheta_{0} }}^{{\vartheta_{0} }} {d\vartheta \,{ \cos }^{k} \vartheta } < \frac{{d_{c - s} }}{2R} $$
(13.32)

For large distances \( {\text{d}}_{{\text{c}}\text{-}{\text{s}}} \gg {\text{R}} \), the limiting angle can be approximated by ϑ0 ≈ R/dc−s, leading to w/w0 ≈ 1/π. It corresponds to the ratio of the projected area 2 R · L to the cylinder surface 2π R · L.

The integral in (13.24) depends only weakly on the exponent k. The rotation blurs the specifics of the angular distribution. Hence, the expression can be approximated by the value for k = 1:

$$ \frac{w}{{w_{0} }} \approx \frac{{d_{c - s} }}{2\pi R}\int\limits_{{ - \vartheta_{0} }}^{{\vartheta_{0} }} {d\vartheta \,{ \cos }^{1} \vartheta } = \frac{{d_{c - s} }}{\pi R}{ \sin }\,\vartheta_{0} = \frac{{d_{c - s} }}{{\pi \,\left( {R + d_{s - c} } \right)}} $$
(13.33)

Twofold and threefold rotations

In the case of the additional rotation of cylindrical samples around their axes, more samples with a correspondingly increased surface can be arranged within the coater. By the rotations, the particle flux is in the mean uniformly distributed over the surfaces, notwithstanding temporarily shadowing. The circumference of the cylindrical carrier (radius R) can be completely filled by 2πR/2r cylindrical samples (radius r). The total surface amounts to A2 = 2πR/2r 2πr · L = 2π2 R · L in comparison to the surface A1 = 2πR · L of the carrier cylinder. The particle flux is now distributed over a larger area. Due to w = j/n = J/A 1/n, the ratio of the growth rates w2/w1 is given by the inverse ratio of the coated areas:

$$ {\text{w}}_{ 2} /{\text{w}}_{ 1} = {\text{A}}_{ 1} /{\text{A}}_{ 2} = 1/\uppi $$
(13.34)

The same argumentation holds also for the relation between the growth rates with threefold and twofold rotations: w3/w2 = A2/A3 = 1/π. The total reduction of the growth rate in a planetary with three axes in comparison to a single rotation is given by 1/π2 = 0.101.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schultrich, B. (2018). Vacuum Arc Equipment for Mass Production of ta-C Coatings. In: Tetrahedrally Bonded Amorphous Carbon Films I. Springer Series in Materials Science, vol 263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55927-7_13

Download citation

Publish with us

Policies and ethics