Skip to main content

New Results on Routing via Matchings on Graphs

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10472))

Included in the following conference series:

Abstract

In this paper we present some new complexity results on the routing time of a graph under the routing via matching model. This is a parallel routing model which was introduced by Alon et al. [1]. The model can be viewed as a communication scheme on a distributed network. The nodes in the network can communicate via matchings (a step), where a node exchanges data (pebbles) with its matched partner. Let G be a connected graph with vertices labeled from \(\{1,...,n\}\) and the destination vertices of the pebbles are given by a permutation \(\pi \). The problem is to find a minimum step routing scheme for the input permutation \(\pi \). This is denoted as the routing time \(rt(G,\pi )\) of G given \(\pi \). In this paper we characterize the complexity of some known problems under the routing via matching model and discuss their relationship to graph connectivity and clique number. We also introduce some new problems in this domain, which may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The base case, which computes \(rt(Q_3)\) was determined to be 4 via a computer search [6].

  2. 2.

    After publication of our results to arXiv [16] a similar result was independently discovered in the context of parallel token swapping by Kawahara et al. [4].

  3. 3.

    We do not write the 1 cycles explicitly as is common.

References

  1. Alon, N., Chung, F.R., Graham, R.L.: Routing permutations on graphs via matchings. SIAM J. Discrete Math. 7(3), 513–530 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gyárfás, A., Ruszinkó, M., Sárközy, G., Szemerédi, E.: Partitioning 3-colored complete graphs into three monochromatic cycles. Electronic J. Comb. 18, 1–16 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. J. ACM (JACM) 43(2), 268–292 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kawahara, J., Saitoh, T., Yoshinaka, R.: The time complexity of the token swapping problem and its parallel variants. In: Poon, S.-H., Rahman, Md, Yen, H.-C. (eds.) WALCOM 2017. LNCS, vol. 10167. Springer, Cham (2017). doi:10.1007/978-3-319-53925-6_35

    Google Scholar 

  5. Zhang, L.: Optimal bounds for matching routing on trees. SIAM J. Discrete Math. 12(1), 64–77 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, W.T., Lu, L., Yang, Y.: Routing numbers of cycles, complete bipartite graphs, and hypercubes. SIAM J. Discrete Math. 24(4), 1482–1494 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Micali, S., Vazirani, V.V.: An \(O (\sqrt{|V|}|E|)\) algoithm for finding maximum matching in general graphs. In: 1980 21st Annual Symposium on Foundations of Computer Science, pp. 17–27. IEEE, October 1980

    Google Scholar 

  8. Yamanaka, K., Demaine, E.D., Ito, T., Kawahara, J., Kiyomi, M., Okamoto, Y., Toshiki, S., Akira, S., Kei, U., Uno, T.: Swapping labeled tokens on graphs. In: Theoretical Computer Science, vol. 586, pp. 81–94 (2015). Computer programming: sorting and searching (Vol. 3). Pearson Education

    Google Scholar 

  9. Miltzow, T., Narins, L., Okamoto, Y., Rote, G., Thomas, A., Uno, T.: Approximation and hardness for token swapping. arXiv preprint arXiv:1602.05150 (2016)

  10. Hall, M.: Combinatorial Theory, vol. 71. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  11. Even, S., Goldreich, O.: The minimum-length generator sequence problem is NP-hard. J. Algorithms 2(3), 311–313 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feige, U.: Approximating maximum clique by removing subgraphs. SIAM J. Discrete Math. 18(2), 219–225 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boppana, R., Halldrsson, M.M.: Approximating maximum independent sets by excluding subgraphs. BIT Numer. Math. 32(2), 180–196 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Engebretsen, L., Holmerin, J.: Clique is hard to approximate within n 1-o(1). In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 2–12. Springer, Heidelberg (2000). doi:10.1007/3-540-45022-X_2

    Chapter  Google Scholar 

  15. Jerrum, M.R.: The complexity of finding minimum-length generator sequences. Theor. Comput. Sci. 36, 265–289 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Banerjee, I., Richards, D.: Routing and sorting via matchings on graphs. arXiv preprint arXiv:1604.04978 (2016)

  17. Benjamini, I., Shinkar, I., Tsur, G.: Acquaintance time of a graph. SIAM J. Discrete Math. 28(2), 767–785 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Banerjee, I., Richards, D.: New results on routing via matchings on graphs. arXiv preprint arXiv:1706.09355 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Banerjee, I., Richards, D. (2017). New Results on Routing via Matchings on Graphs. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55751-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55750-1

  • Online ISBN: 978-3-662-55751-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics