Skip to main content

Bewegung und Osteoporose

  • Chapter
  • 23k Accesses

Zusammenfassung

Knochengewebe verfügt über die Fähigkeit, sich an wechselnde mechanische Bedingungen anzupassen. Dies erfolgt über Steuerung der Auf- und Abbauprozesse mit dem Resultat der Strukturanpassung des Knochens. Sportliche Aktivität ist deshalb prinzipiell geeignet, um stärkere Knochenstrukturen aufzubauen. Dabei ist zu berücksichtigen, dass die wichtigsten mechanischen Einflüsse von der regionalen Muskulatur im Umfeld des Knochens ausgehen. Osteoporose ist eine mit zunehmendem Alter auftretende Erkrankung, die das Risiko für Frakturen erhöht. Wichtig sind dabei vor allem die Hüftfrakturen, welche im Zusammenhang mit Stürzen entstehen, und Frakturen der Wirbelkörper, welche bei Osteoporose auch ohne Sturz entstehen können. Ursache der Osteoporose ist ein altersbedingter Abbau von Knochenmaterial und vermutlich auch die Verschlechterung der Materialeigenschaften im Alter. Das Ausmaß eines Knochenabbaus wird klinisch durch die sog. »Knochendichtemessung« abgeschätzt. Die Bewegungstherapie soll bei Osteoporose abzielen auf a) Reduktion von Schmerzen, um einen ungestörten Bewegungsablauf zu ermöglichen, b) Aufbau von Muskulatur, um für den Knochen ausreichende Kräfte zu erzeugen, und c) Balancetraining, um Stürze zu reduzieren. Da die Bewegungstherapie über Jahre hinweg erfolgen muss, kann sie nur erfolgreich sein, wenn sie vom Patienten mit Freude ausgeführt wird. Wichtigste Randbedingung bei der Auswahl von Übungen und Bewegungsformen ist darum die Motivation des Patienten.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Wer an dieser Stelle neugierig geworden ist, dem sei ausdrücklich das wunderbare Buch von Gordon (1987) empfohlen.

Literatur

  • Bruyere O, Dardenne C, Lejeune E, Zegels B, Pahaut A, Richy F et al. (2003) Subchondral tibial bone mineral density predicts future joint space narrowing at the medial femoro-tibial compartment in patients with knee osteoarthritis. Bone 32(5): 541-545

    Google Scholar 

  • Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18(3): 189-200

    Google Scholar 

  • Cointry GR, Ferretti JL, Reina PS, Nocciolino LM, Rittweger J, Capozza RF (2014) The pqct ‘bone strength indices’ (bsis, ssi) Relative mechanical impact and diagnostic value of the indicators of bone tissue and design quality employed in their calculation in healthy men and pre- and post-menopausal women. J Musculoskelet Neuronal Interact 14(1): 29-40

    Google Scholar 

  • Diab T, Condon KW, Burr DB, Vashishth D (2006) Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone 38(3): 427

    Google Scholar 

  • Diez-Perez A, Guerri R, Nogues X, Caceres E, Pena MJ, Mellibovsky L et al. (2010) Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res 25(8): 1877-1885

    Google Scholar 

  • Eser P, Frotzler A, Zehnder Y, Knecht H, Denoth J, Schiessl H (2004) Relationship between the duration of paralysis and bone structure: A pqct study of spinal cord injured individuals. Bone 34 (5): 869-880

    Google Scholar 

  • Frost HM (1987) Bone »mass« and the »mechanostat«: A proposal. Anat Rec 219(1): 1-9

    Google Scholar 

  • Frost HM (1990) Skeletal structural adaptations to mechanical usage (satmu): 1. Redefining wolff’s law: The bone modeling problem. AnatRec 226(4): 403

    Google Scholar 

  • Gordon JE (1987) Strukturen unter Stress. Spektrum der Wissenschaft, Heidelberg

    Google Scholar 

  • Group WHOS (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organization, Geneva

    Google Scholar 

  • Ireland A, Maden-Wilkinson T, McPhee J, Cooke K, Narici M, Degens H et al. (2013) Upper limb muscle-bone asymmetries and bone adaptation in elite youth tennis players. Med Sci Sports Exerc 45(9): 1749-1758

    Google Scholar 

  • Ireland A, Rittweger J, Degens H (2013) The influence of muscular action on bone strength via exercise. Clin Rev Bone Miner Metab 12: 93-102

    Google Scholar 

  • Ireland A, Degens H, Maffulli N, Rittweger J (2015) Tennis service stroke benefits humerus bone: Is torsion the cause? Calcif Tissue Int 97(2): 193-198

    Google Scholar 

  • Maganaris CN, Rittweger J, Narici MV (2011) Adaptive processes in human bone and tendon. In: Cardinale M, Newton R, Nosaka K (eds) Strength and conditioning biological principles and practical applications. Wiley-Blackwell, Oxford, p 137-147

    Google Scholar 

  • Mittag U, Kriechbaumer A, Bartsch M, Rittweger J (2015) Form follows function: A computational simulation exercise on bone shape forming and conservation. J Musculoskelet Neuronal Interact 15(2): 215-226

    Google Scholar 

  • Mosley JR, Lanyon LE (1998) Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 23(4): 313-318

    Google Scholar 

  • Nikander R, Sievanen H, Heinonen A, Kannus P (2005) Femoral neck structure in adult female athletes subjected to different loading modalities. J Bone Miner Res 20(3): 520-528

    Google Scholar 

  • Nikander R, Sievanen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P (2010) Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life. BMC Med 8: 47

    Google Scholar 

  • Riggs BL, Melton LJ (1995) The worldwide problem of osteoporosis: Insights afforded by epidemiology. Bone 17(5 Suppl): 505S

    Google Scholar 

  • Riggs BL, Melton ILJ, III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM et al. (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19(12): 1945

    Google Scholar 

  • Rittweger J, Just K, Kautzsch K, Reeg P, Felsenberg D (2002) Treatment of chronic lower back pain with lumbar extension and whole-body vibration exercise: A randomized controlled trial. Spine 27(17): 1829-1834

    Google Scholar 

  • Rittweger J, Frost HM, Schiessl H, Ohshima H, Alkner B, Tesch P et al. (2005) Muscle atrophy and bone loss after 90 days of bed rest and the effects of flywheel resistive exercise and pamidronate: Results from the ltbr study. Bone 36(6): 1019-1029

    Google Scholar 

  • Rittweger J, Felsenberg D (2009) Recovery of muscle atrophy and bone loss from 90 days bed rest: Results from a one-year follow-up. Bone 44(2): 214-224

    Google Scholar 

  • Roy DK, O’Neill TW, Finn JD, Lunt M, Silman AJ, Felsenberg D et al. (2003) Determinants of incident vertebral fracture in men and women: Results from the european prospective osteoporosis study (epos) Osteoporos Int 14(1): 19

    Google Scholar 

  • Rubin CT, Lanyon LE (1987) Kappa delta award paper. Osteoregulatorynature of mechanical stimuli: Function as a determinant for adaptive remodeling in bone. J Orthop Res 5(2): 300-310

    Google Scholar 

  • Schlaich C, Minne HW, Bruckner T, Wagner G, Gebest HJ, Grunze M et al. (1998) Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int 8(3): 261-267

    Google Scholar 

  • Thomsen JS, Ebbesen EN, Mosekilde L (1998) Relationships between static histomorphometry and bone strength measurements in human iliac crest bone biopsies. Bone 22(2): 153

    Google Scholar 

  • Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M et al. (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355(9215): 1607-1611

    Google Scholar 

  • Warden SJ, Mantila Roosa SM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG et al. (2014) Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A 111(14): 5337-5342

    Google Scholar 

  • Wilks DC, Winwood K, Kwiet A, Gilliver SF, Ferretti JL, Felsenberg D et al. (2007) Bone strength of the tibia and the radius in master runners, master walkers and sedentary people: A peripheral quantitative computer tomography study. Life Science 2007; 9/7-12/7. Biochemical Society, British Pharmacological Society, Physiological Society, Glasgow

    Google Scholar 

  • Wilks DC, Winwood K, Gilliver SF, Kwiet A, Chatfield M, Michaelis I et al. (2009) Bone mass and geometry of the tibia and the radius of master sprinters, middle and long distance runners, race-walkers and sedentary control participants: A pqct study. Bone 45(1): 91-97

    Google Scholar 

  • Wilks DC, Winwood K, Gilliver SF, Kwiet A, Sun LW, Gutwasser C et al. (2009) Age-dependency in bone mass and geometry: A pqct study on male and female master sprinters, middle and long distance runners, race-walkers and sedentary people. J Musculoskelet Neuronal Interact 9(4): 236-246

    Google Scholar 

  • Wong AM, Lan C (2008) Tai chi and balance control. Med Sport Sci 52: 115-123

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rittweger, J. (2017). Bewegung und Osteoporose. In: Banzer, W. (eds) Körperliche Aktivität und Gesundheit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50335-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50335-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50334-8

  • Online ISBN: 978-3-662-50335-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics