Skip to main content

Application-Oriented Design Optimization Methods for Electrical Machines

  • Chapter
  • First Online:
Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems

Part of the book series: Power Systems ((POWSYS))

  • 1703 Accesses

Abstract

From the perspective of engineering applications, the design optimization of electrical machines and drive systems are generally proposed with several specific requirements and constraints, such as the rated torque, the rated speed, the given volume and mass, etc. Therefore, the corresponding design optimization problems are actually oriented by the applications. This chapter aims to develop an application-oriented design optimization method for electrical machines by the deterministic and robust design approaches, respectively. Two kinds of applications are investigated. The first one is about the design optimization of permanent magnet soft magnetic composite machines for compressor drives in refrigerators and air-conditioners. The second one is about the design optimization of flux-switching permanent magnet machines for hybrid electric vehicle drives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu ZQ, Howe D (2007) Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proc IEEE 95(4):746–765

    Article  Google Scholar 

  2. Emadi A, Lee YJ, Rajashekara K (2008) Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans Ind Electron 55(6):2237–2245

    Article  Google Scholar 

  3. Lei G, Wang TS, Guo YG, Zhu JG, Wang SH (2014) System level design optimization method for electrical drive system: deterministic approach. IEEE Trans Ind Electron 61(12):6591–6602

    Article  Google Scholar 

  4. Salisa AR, Zhang N, Zhu JG (2011) A comparative analysis of fuel economy and emissions between a conventional HEV and the UTS PHEV. IEEE Trans Veh Techno 60(1):44–54

    Article  Google Scholar 

  5. Chen JT, Zhu ZQ (2010) Winding configurations and optimal stator and rotor pole combination of flux-switching PM brushless AC machines. IEEE Trans Energy Convers 25(2):293–302

    Article  Google Scholar 

  6. Chen JT, Zhu ZQ, Iwasaki S, Deodhar RP (2011) Influence of slot opening on optimal stator and rotor pole combination and electromagnetic performance of switched-flux PM brushless AC machines. IEEE Trans Ind Appl 47(4):1681–1691

    Article  Google Scholar 

  7. Xu W, Zhu JG, Guo YG et al (2011) New axial laminated-structure flux switching permanent magnet machine with 6/7 poles. IEEE Trans Magn 47(10):2823–2826

    Article  Google Scholar 

  8. Hasanien HM, Abd-Rabou AS, Sakr SM (2010) Design optimization of transverse flux linear motor for weight reduction and performance improvement using response surface methodology and genetic algorithms. IEEE Trans Energy Convers 25(3):598–605

    Article  Google Scholar 

  9. Hasanien HM (2011) Particle swarm design optimization of transverse flux linear motor for weight reduction and improvement of thrust force. IEEE Trans Ind Electron 58(9):4048–4056

    Article  Google Scholar 

  10. Yao D, Ionel DM (2013) A review of recent developments in electrical machine design optimization methods with a permanent magnet synchronous motor benchmark study. IEEE Tran Ind Appl 49(3):1268–1275

    Article  Google Scholar 

  11. Lebensztajn L, Marretto CAR, Costa MC, Coulomb J-L (2004) Kriging: a useful tool for electromagnetic device optimization. IEEE Trans Magn 40(2):1196–1199

    Article  Google Scholar 

  12. Lei G, Shao KR, Guo YG, Zhu JG, Lavers JD (2008) Sequential optimization method for the design of electromagnetic device. IEEE Trans Magn 44(11):3217–3220

    Article  Google Scholar 

  13. Lei G, Shao KR, Guo YG, Zhu JG, Lavers JD (2009) Improved Sequential optimization method for high dimensional electromagnetic optimization problems. IEEE Trans Magn 45(10):3993–3996

    Article  Google Scholar 

  14. Lei G, Yang GY, Shao KR, Guo YG, Zhu JG, Lavers JD (2010) Electromagnetic device design based on RBF models and two new sequential optimization strategies. IEEE Trans Magn 46(8):3181–3184

    Article  Google Scholar 

  15. Lei G, Shao KR, Guo YG, Zhu JG (2012) Multi-objective sequential optimization method for the design of industrial electromagnetic devices. IEEE Trans Magn 48(11):4538–4541

    Article  Google Scholar 

  16. Lei G, Guo YG, Zhu JG, Chen XM, Xu W (2012) Sequential subspace optimization method for electromagnetic devices design with orthogonal design technique. IEEE Trans Magn 48(2):479–482

    Article  Google Scholar 

  17. Lei G, Xu W, Hu JF, Zhu JG, Guo YG, Shao KR (2014) Multi-level design optimization of a FSPMM drive system by using SSOM. IEEE Trans Magn 50(2), Article no. 7016904

    Google Scholar 

  18. Guo YG, Zhu JG, Watterson PA, Wu W (2006) Development of a PM transverse flux motor with soft magnetic composite core. IEEE Trans Energy Conver 21(2):426–434

    Article  Google Scholar 

  19. Zhu JG, Guo YG, Lin ZW et al (2011) Development of PM transverse flux motors with soft magnetic composite cores. IEEE Trans Magn 47(10):4376–4383

    Article  Google Scholar 

  20. Guo YG, Zhu JG, Dorrell D (2009) Design and analysis of a claw pole PM motor with molded SMC core. IEEE Trans Magn 45(10):4582–4585

    Article  Google Scholar 

  21. Huang YK, Zhu JG et al (2009) Thermal analysis of high-speed SMC motor based on thermal network and 3D FEA with rotational core loss included. IEEE Trans Magn 45(106):4680–4683

    Article  Google Scholar 

  22. Xu W, Lei G, Zhu JG, Guo YG (2012) Theoretical research on new laminated structure flux switching permanent magnet machine for novel topologic plug-in HEV. IEEE Trans Magn 48(11):4050–4053

    Article  Google Scholar 

  23. Xu W, Zhu JG, Zhang YC, Wang TS (2011) Electromagnetic design and performance evaluation on 75 kW axially laminated flux switching permanent magnet machine. Proc ICEMS, pp 1–6

    Google Scholar 

  24. Cao R, Mi C, Cheng M (2012) Quantitative comparison of flux-switching permanent-magnet motors with interior permanent magnet motor for EV, HEV and PHEV applications. IEEE Trans Magn 48(8):2374–2384

    Article  Google Scholar 

  25. Dorrell DG, Knight AM, Evans L, Popescu M (2012) Analysis and design techniques applied to hybrid vehicle drive machines—assessment of alternative IPM and induction motor topologies. IEEE Trans Ind Electron 59(10):3690–3699

    Article  Google Scholar 

  26. Takeno M, Chiba A, Hoshi N, Ogasawara S, Takemoto M, Rahman MA (2012) Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles. IEEE Trans Ind Appl 48(4):1327–1334

    Article  Google Scholar 

  27. Zhu ZQ, Chen JT (2010) Advanced flux-switching permanent magnet brushless machines. IEEE Trans Magn 46(6):1447–1453

    Article  Google Scholar 

  28. Hua W, Cheng M, Zhu ZQ, Howe D (2008) Analysis and optimization of back EMF waveform of a flux-switching permanent magnet motor. IEEE Trans Energy Conver 23(3):727–733

    Article  Google Scholar 

  29. Fei W, Luk PCK, Shen JX, Wang Y, Jin M (2012) A novel permanent-magnet flux switching machine with an outer-rotor configuration for in-wheel light traction applications. IEEE Trans Ind Appl 48(5):1496–1506

    Article  Google Scholar 

  30. Xu W, Zhu JG, Zhang YC, Hu JF (2011) Cogging torque reduction for radially laminated flux-switching permanent magnet machine with 12/14 poles. In: Proceedings of the 37th Annual Conference on IEEE Industrial Electronics Society (IECON), pp 3590–3595

    Google Scholar 

  31. Xu W, Lei G, Zhang Y, Zhu JG et al (2011) Development of electrical drive system for the UTS PHEV. In: Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), pp 1886–1893

    Google Scholar 

  32. Hua W, Cheng M, Zhu ZQ, Howe D (2006) Design of flux-switching permanent magnet machine considering the limitation of inverter and flux-weakening capability. In: Proceedings of the 41st IAS Annual Meeting—Industry Applications Conference, vol. 5, pp 2403–2410

    Google Scholar 

  33. Lei G, Guo YG, Zhu JG et al (2012) System level six sigma robust optimisation of a drive system with PM transverse flux machine. IEEE Trans Magn 48(2):923–926

    Article  Google Scholar 

  34. Lei G, Zhu JG, Guo YG, Hu JF, Xu W, Shao KR (2013) Robust design optimization of PM-SMC motors for Six Sigma quality manufacturing. IEEE Trans Magn 49(7):3953–3956

    Article  Google Scholar 

  35. Lei G, Zhu JG, Guo YG, Shao KR, Xu W (2014) Multi-objective sequential design optimization of PM-SMC motors for six sigma quality manufacturing. IEEE Trans Magn 50( 2):701−720

    Google Scholar 

  36. Lei G, Wang TS, Guo YG, Zhu JG, Wang SH (2015) System level design optimization method for electrical drive system: robust approach. IEEE Trans Ind Electron 62(8):4702–4713

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Lei .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lei, G., Zhu, J., Guo, Y. (2016). Application-Oriented Design Optimization Methods for Electrical Machines. In: Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49271-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49271-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49269-7

  • Online ISBN: 978-3-662-49271-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics