Skip to main content

Grundlagen der Neuro-/Psychopharmakologie

  • Chapter
  • First Online:
Neuro-/Psychopharmaka im Kindes- und Jugendalter

Zusammenfassung

In diesem Kapitel werden zunächst wichtige Grundbegriffe der Neuro-/Psychopharmakologie erklärt und allgemeine Fragen der Arzneimittelwirkungen besprochen. Weiterhin werden Prinzipien der Neurotransmission, wichtige Neurotransmittersysteme sowie molekulare Strukturen im Gehirn als Angriffspunkte von Neuro-/Psychopharmaka beschrieben, um Wirkungen von zentral aktiven Arzneimitteln im Gesamtzusammenhang zu begreifen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Weiterführende Literatur

  • Aktories K, Förstermann U, Hofmann FB, Starke K (2013) Allgemeine und spezielle Pharmakologie und Toxikologie, 11. Aufl. Urban & Fischer, München

    Google Scholar 

  • Brady S, Siegel GJ, Albers RW, Price DL (2012) Basic neurochemistry. Principles of molecular, cellular, and medical neurobiology, 8. Aufl. Academic Press, Oxford

    Google Scholar 

  • Kandel ER, Schwartz JH, Jessel TM, Siegelbaum SA, Hudspeth AJ (2012) Principles of neural science, 5. Aufl. McGraw-Hill, New York

    Google Scholar 

  • Mutschler E, Geisslinger G, Kroemer HK, Menzel S, Ruth P (2012) Mutschler Arzneimittelwirkungen. Pharmakologie – Klinische Pharmakologie – Toxikologie, 10. Aufl. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Palmer M, Chan A, Dieckmann T, Honek J (2012) Biochemical pharmacology. Wiley, Hoboken

    Google Scholar 

  • Schatzberg AF, Nemeroff CB (2009) The American psychiatric publishing textbook of psychopharmacology, 4. Aufl. American Psychiatric Publishing, Arlington

    Google Scholar 

  • Squire LR, Berg D, Bloom FE, du Lac S, Ghosh A, Spitzer NC (2012) Fundamental neuroscience, 4. Aufl. Academic Press, Oxford

    Google Scholar 

Zitierte Literatur

  • Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander SPH, Benson HE, Faccenda E et al (2013a) The concise guide to pharmacology 2013/14: G protein-coupled receptors. Br J Pharmacol 170:1459–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander SPH, Benson HE, Faccenda E et al (2013b) The concise guide to pharmacology 2013/14: ligand-gated ion channels. Br J Pharmacol 170:1582–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander SPH, Benson HE, Faccenda E et al (2013c) The concise guide to pharmacology 2013/14: transporters. Br J Pharmacol 170:1706–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo FAC, Carvalho LRB, Grinberg LT et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    Article  PubMed  Google Scholar 

  • Barbeau A, Sourkes TL, Murphy GF (1962) Les catecholamines dans la maladie de Parkinson. In: de Ajuriaguerra J (Hrsg) Monoamines et système nerveux central. Masson, Paris, S 247–262

    Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  CAS  PubMed  Google Scholar 

  • Baumeister AA, Hawkins MF, Uzelac SM (2003) The myth of reserpine-induced depression: role in the historical development of the monoamine hypothesis. J Hist Neurosci 12:207–220

    Article  PubMed  Google Scholar 

  • Bear MF, Connors BW, Paradiso MA (2009) Neurowissenschaften. Ein grundlegendes Lehrbuch für Biologie, Medizin und Psychologie, 3. Aufl. Spektrum, Heidelberg, S 183 (Deutsche Ausgabe herausgegeben von A.K. Engel)

    Google Scholar 

  • Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  CAS  PubMed  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1961) Der L-Dioxyphenylalanineffekt bei der Parkinson-Akinese. Wien Klin Wschr 73:787–788

    CAS  PubMed  Google Scholar 

  • Blackwell B, Marley E, Price J, Taylor D (1967) Hypertensive interactions between monoamine inhibitors and foodstuffs. Brit J Psychiatr 113:349–365

    Article  CAS  Google Scholar 

  • Broese M, Riemann D, Hein L, Nissen C (2012) alpha-Adrenergic receptor function, arousal and sleep: Mechanisms and therapeutic implications. Pharmacopsychiatry 45:209–216

    Article  CAS  PubMed  Google Scholar 

  • Clark AJ (1937) Individual variation in response to drugs. Br Med J 2:307–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2. Aufl. Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Crane GE (1957) Iproniazid (Marsilid) phosphate: a therapeutic agent for mental disorders and debilitating diseases. Psychiatr Res Rep Am Psychiatr Assoc 8:142–152

    CAS  PubMed  Google Scholar 

  • Dean B (2002) Changes in the molecular structure of the brain in bipolar disorder: findings using human postmortem brain tissue. World J Biol Psychiatry 3:125–132

    Article  PubMed  Google Scholar 

  • Ernst E, Vögtli A (2010) Moderne Pharmakokinetik. Wiley-VCH, Weinheim, S 3

    Google Scholar 

  • Freis ED (1954) Mental depression in hypertensive patients treated for long periods with large doses of reserpine. N Engl J Med 251:1006–1008

    Article  CAS  PubMed  Google Scholar 

  • Gerlach M, Riederer P (2002) Monoamin-Oxidase-Hemmer: Einteilung. In: Riederer P, Laux G, Pöldinger W (Hrsg) Neuro-Psychopharmaka, Antidepressiva, Phasenprophylaktika und Stimmungsstabilisierer, 2. Aufl. Bd. 3. Springer, Wien, S 437–441

    Google Scholar 

  • Gerlach M, Gsell W, Kornhuber J et al (1996) A post mortem study on neurochemical markers of dopaminergic, GABA-ergic and glutamatergic neurons in basal ganglia-thalamocortical circuits in Parkinson syndrome. Brain Res 741:142–152

    Article  CAS  PubMed  Google Scholar 

  • Gerlach M, Reichmann H, Riederer P (2007) Die Parkinson-Krankheit. Grundlagen, Klinik, Therapie, 4. Aufl. Springer, Wien

    Book  Google Scholar 

  • Girault JA, Greengard P (2004) The neurobiology of dopamine signaling. Arch Neurol 61:641–644

    Article  PubMed  Google Scholar 

  • Hassel B, Dingledine (2005) Glutamate. In: Siegel GJ, American Society for Neurochemistry, Albers RW, Brady S, Price DL (Hrsg) Basic neurochemistry. Molecular, cellular and medical aspects, 7. Aufl. Academic Press, London, S 270

    Google Scholar 

  • Heal DJ, Smith SL, Gosden J, Nutt DJ (2013) Amphetamine, past and present – a pharmacological and clinical perspective. J Psychopharmacol 27:479–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiemke C, Baumann P, Stingl J (2012) Pharmakokinetik, Pharmakogenetik und therapeutisches Drug Monitoring. In: Gründer G, Benkert O (Hrsg) Handbuch der psychiatrischen Pharmakotherapie, 2. Aufl. Springer, Berlin, S 441–464

    Google Scholar 

  • Huot P, Fox SH, Brotchie JM (2011) The serotonergic system Parkinson’s disease. Progr Neurobiology 95:163–212

    Article  CAS  Google Scholar 

  • Kenakin T (2004) Principles: Receptor theory in pharmacology. Trends Pharmacol Sci 25:186–192

    Article  CAS  PubMed  Google Scholar 

  • Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Delopmental pharmacology – drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Kirchheiner J, Rodriguez-Antona C (2009) Cytochrome P450 2D6 genotyping. Potential role in improving treatment outcomes in psychiatric disorders. CNS Drugs 23:181–191

    Article  CAS  PubMed  Google Scholar 

  • Labarca C, Nowak MW, Zhang H, Tang L, Deshpande P, Lester HA (1995) Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature 376:514–516

    Article  CAS  PubMed  Google Scholar 

  • Laupacis A, Sackett DL, Roberts RS (1988) An assessment of clinically useful measures of the consequences of treatment. N Engl J Med 318:1728–1733

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Munoz F, Alamo C, Cuenca E, Shen WW, Clervoy P, Rubio G (2005) History of the discovery and clinical introduction of chlorpromazine. Ann Clin Psychiatry 17:113–135

    Article  PubMed  Google Scholar 

  • Madras BK, Miller GM, Fischman AJ (2005) The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiat 57:1397–1409

    Article  CAS  PubMed  Google Scholar 

  • Murphy DL, Li W, Engel S, Wichems C, Andrews A, Lesch K-P, Uhl G (2001) Genetic perspectives on the serotonin transporter. Brain Res Bull 56:487–494

    Article  CAS  PubMed  Google Scholar 

  • Mutschler E, Geisslinger G, Kroemer HK, Ruth P, Schäfer-Korting M (2008) Mutschler Arzneimittelwirkungen, 9. Aufl. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 5

    Google Scholar 

  • Mutschler E, Geisslinger G, Kroemer HK, Menzel S, Ruth P (2012) Mutschler Arzneimittelwirkungen. Pharmakologie – Klinische Pharmakologie – Toxikologie, 10. Aufl. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Nicholas AP, Hökfelt T, Pieribone PA (1996) The distribution and significance of CNS adrenoreceptors examined with in situ hybridization. Trends Pharmacol Sci 17:245–255

    Article  CAS  PubMed  Google Scholar 

  • Olney JW (1978) Neurotoxicity of excitatory amino acids. In: McGeer EG, Olney JW (Hrsg) Kainic acid as a tool in neurobiology. Raven Press, New York, S 95–121

    Google Scholar 

  • Pupo A, Minneman K (2001) Adrenergic pharmacology: focus on the central nervous system. CNS Spectr 6:656–662

    CAS  PubMed  Google Scholar 

  • Quiedeville A, Boulouard M, Da Silva Costa-Aze V, Dauphin F, Bouet V, Freret (2014) 5-HT6 receptor antagonists as treatment for age-relatd cognitive decline. Rev Neurosci 25:417–427

    Article  CAS  PubMed  Google Scholar 

  • Riederer P, Youdim MBH (1986) Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated with L-deprenyl. J Neurochem 46:1359–1365

    Article  CAS  PubMed  Google Scholar 

  • Root DH, Mejias-Aponte CA, Zhang SL, Wang HL, Hoffman AF, Lupica CR, Morales M (2014) Single rodent mesohabenular axons release glutamate and GABA. Nat Neurosci 17:1543–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallee F, Connor DF, Newcorn JH (2013) A review of the rational and clinical utilization of α2-adrenoceptor agonists for the treatment of attention-deficit/hyperactivity and related disorders. J Child Adol Psychop 23:308–319

    Article  CAS  Google Scholar 

  • Schwenk J, Metz M, Zolles G et al (2010) Native GABAB receptors are heteromultimers with a family of auxiliary subunits. Nature 464:231–235

    Article  Google Scholar 

  • Snyder SH (2002) Forty years of neurotransmitters. A personal account. Arch Gen Psychiatry 59:983–994

    Article  CAS  PubMed  Google Scholar 

  • Starke K (2005) Allgemeine Pharmakologie und Toxikologie. Grundbegriffe. In: Aktories K, Förstermann U, Hofmann FB, Starke K (Hrsg) Allgemeine und spezielle Pharmakologie und Toxikologie, 9. Aufl. Urban & Fischer, München, S 1–5

    Google Scholar 

  • Taylor P, Brown JH (2005) Acetylcholine. In: Siegel GJ, American Society for Neurochemistry, Albers RW, Brady S, Price DL (Hrsg) Basic neurochemistry. Molecular, cellular and medical aspects, 7. Aufl. Academic Press, London, S 187

    Google Scholar 

  • Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: Structure and function. Nat Rev Neurosci 4:13–25

    Article  CAS  PubMed  Google Scholar 

  • Watling KJ (2006) The Sigma-RBI handbook of receptor classification and signal transduction, 5. Aufl. Sigma-RBI, Natick

    Google Scholar 

  • Waxham MN (2003) Neurotransmitter receptors. In: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ (Hrsg) Fundamental neuroscience, 2. Aufl. Academic Press, London, S 225–258

    Google Scholar 

  • Weber MW (2012) Die moderne Psychopharmakologie aus wissenschaftshistorischer Sicht. In: Gründer G, Benkert O (Hrsg) Handbuch der psychiatrischen Pharmakotherapie, 2. Aufl. Springer, Berlin, S 23–36

    Google Scholar 

  • Zimmer L, Billard T (2014) Molecular imaging of the serotonin 5-HT7 receptors: from autoradiography to positron emission tomography. Rec Neurosci 25:357–365

    CAS  Google Scholar 

  • Zimmermann H (1993) Synaptic transmission. Cellular and molecular basis. Thieme, Oxford, S 75

    Google Scholar 

  • Zohar J, Nutt DJ, Kupfer DJ, Möller H-J, Yamawaki S, Spedding M, Stahl SM (2014) A proposal for an updated neuropsychopharmacological nomenclature. Eur Neuropsychopharmacol 24:1005–1014

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Gerlach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drepper, C., Gerlach, M. (2016). Grundlagen der Neuro-/Psychopharmakologie. In: Gerlach, M., Mehler-Wex, C., Walitza, S., Warnke, A., Wewetzer, C. (eds) Neuro-/Psychopharmaka im Kindes- und Jugendalter. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48624-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48624-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48623-8

  • Online ISBN: 978-3-662-48624-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics