Skip to main content

Extraction of Sandalwood Oil Using Ionic Liquids: Toward a “Greener” More Efficient Process

  • Chapter
  • First Online:
Ionic Liquids for Better Separation Processes

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1326 Accesses

Abstract

We have demonstrated that sandalwood can be dissolved in the ionic liquid 1,3-diethylimidazolium acetate ([C2C2im][OAc]) and that sandalwood oil can then be extracted from the sandalwood/[C2C2im][OAc] solutions using diethyl ether, which forms a biphasic system with the ionic liquid. The main components of the obtained sandalwood oil, as confirmed by GC–MS, NMR, and FTIR, are (Z)-α-santalol and (Z)-β-santalol. Pretreatment of the sandalwood with microwave irradiation or poly(ethylene glycol), the presence of polyoxometalate as the catalyst, and higher dissolution temperature all led to increased essential oil yield. After the extraction of the essential oil, carbohydrate-rich material and free lignin were regenerated from the wood/[C2C2im][OAc] solution, thus allowing an integrated process of separating all the major components of sandalwood, the biopolymers and the oil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howes MJR, Simmonds MSJ, Kite GC (2004) Evaluation of the quality of sandalwood essential oils by gas chromatography–mass spectrometry. J Chromatogr A 1028:307–312

    Article  CAS  Google Scholar 

  2. Subasinghe SMCUP (2013) Sandalwood research: a global perspective. J Trop For Environ 3:1–8

    Google Scholar 

  3. Shankaranarayana KH, Ravikumar G, Rajeevalochan AN et al (2005) Fragrant oils from exhausted sandalwood powder and sandal sapwood. J Sci Ind Res 64:965–966

    CAS  Google Scholar 

  4. Jirovetz L, Buchbauer G, Denkova Z et al (2006) Comparative study on the antimicrobial activities of different sandalwood essential oils of various origin. Flavour Fragr J 21:465–468

    Article  CAS  Google Scholar 

  5. Oil of Sandalwood (Santalum album L.), 2nd edn, ISO 3518 (2002) International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  6. Shellie R, Marriott P, Morrison P (2004) Comprehensive two-dimensional gas chromatography with flame ionization and time-of-flight mass spectrometry detection: qualitative and quantitative analysis of west Australian sandalwood oil. J Chromatogr Sci 42:417–422

    Article  CAS  Google Scholar 

  7. Sciarrone D, Costa R, Ragonese C et al (2011) Application of a multidimensional gas chromatography system with simultaneous mass spectrometric and flame ionization detection to the analysis of sandalwood oil. J Chromatogr A 1218:137–142

    Article  CAS  Google Scholar 

  8. Piggott MJ, Ghisalberti EL, Trengove RD (1997) Western Australian sandalwood oil: extraction by different techniques and variations of the major components in different sections of a single tree. Flavour Frag J 12:43–46

    Article  CAS  Google Scholar 

  9. Nautiyal OH (2011) Analytical and Fourier transform infra red spectroscopy evaluation of sandalwood oil extracted with various process techniques. J Nat Prod 4:150–157

    CAS  Google Scholar 

  10. Rogers RD, Seddon KR (2003) Ionic liquids – solvents of the future? Science 302:792–793

    Article  Google Scholar 

  11. Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537

    Article  CAS  Google Scholar 

  12. Sun N, Rodríguez H, Rahman M et al (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421

    Article  CAS  Google Scholar 

  13. Li W, Sun N, Stoner B et al (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038–2047

    Article  CAS  Google Scholar 

  14. Fort DA, Remsing RC, Swatloski RP et al (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69

    Article  CAS  Google Scholar 

  15. Sun N, Rahman M, Qin Y et al (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655

    Article  CAS  Google Scholar 

  16. Li C, Knierim B, Manisseri C et al (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906

    Article  CAS  Google Scholar 

  17. Bica K, Gaertner P, Rogers RD (2011) Ionic liquids and fragrances – direct isolation of orange essential oil. Green Chem 13:1997–1999

    Article  CAS  Google Scholar 

  18. Rothenberger OS, Krasnoff SB, Rollins RB (1980) Conversion of (+)-limonene to (−)-carvone: an organic laboratory sequence of local interest. J Chem Educ 57:741–742

    Article  CAS  Google Scholar 

  19. Ma C, Liu T, Yang L et al (2011) Ionic liquid-based microwave-assisted extraction of essential oil and biphenyl cyclooctene lignans from Schisandra chinensis Baill fruits. J Chromatogr A 1218:8573–8580

    Article  CAS  Google Scholar 

  20. Usuki T, Yasuda N, Yoshizawa-Fujita M et al (2011) Extraction and isolation of shikimic acid from Ginkgo biloba leaves utilizing an ionic liquid that dissolves cellulose. Chem Commun 47:10560–10562

    Article  CAS  Google Scholar 

  21. Gurau G, Wang H, Qiao Y et al (2012) Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing. Pure Appl Chem 84:745–754

    Article  CAS  Google Scholar 

  22. Roh HS, Lim EG, Kim J et al (2011) Acaricidal and oviposition deterring effects of santalol identified in sandalwood oil against two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). J Pest Sci 84:495–501

    Article  Google Scholar 

  23. Nikiforov A, Jirovetz L, Buchbauer G et al (1988) GC-FTIR and GC-MS in odour analysis of essential oils. Mikrochim Acta 2:193–198

    Article  Google Scholar 

  24. Sun N, Jiang X, Maxim ML et al (2011) Use of polyoxometalate catalysts in ionic liquids to enhance the dissolution and delignification of woody biomass. ChemSusChem 4:65–73

    Article  CAS  Google Scholar 

  25. Creangă DM (2009) The conversion of archaeological wood. Eur J Sci Theol 5:57–68

    Google Scholar 

Download references

Acknowledgments

AK is thankful to CSIR, India, for awarding a Raman Research Fellowship (No. 22/RRF/2010-ISTAD) to carry out research at the Center for Green Manufacturing, The University of Alabama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin D. Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumar, A., Wang, H., Rogers, R.D. (2016). Extraction of Sandalwood Oil Using Ionic Liquids: Toward a “Greener” More Efficient Process. In: Rodríguez, H. (eds) Ionic Liquids for Better Separation Processes. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48520-0_6

Download citation

Publish with us

Policies and ethics