Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 562 Accesses

Abstract

Lasers have attracted significant attentions since the first advent in 1960 due to their remarkable properties, such as monochromaticity, high coherence, good collimation, and high intensity. They have been widely used in a variety of fields, ranging from basic research to engineering applications, such as communications, industrial manufacture, and military affairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Wilson, J.F.B. Hawkes, Lasers: Principles and Applications (Prentice Hall, London, 1987)

    Google Scholar 

  2. http://www.baike.com/wiki/%E6%BF%80%E5%85%89?prd=so_1_doc

  3. R.C. Powell, Physics of Solid-State Laser Materials (Springer, Berlin, 1998)

    Book  Google Scholar 

  4. C. Jauregui, J. Limpert, A. Tünnermann, High-power fiber lasers. Nat. Photon. 7(11), 861–867 (2013)

    Article  Google Scholar 

  5. M.E. Fermann, I. Hartl, Ultrafast fiber lasers. Nat. Photon. 7(11), 868–874 (2013)

    Article  Google Scholar 

  6. C.K. Kao, T.W. Davies, Spectroscopic studies of ultra-low loss optical glasses I: single beam method. J. Sci. Instrum. 2(1), 1063–1068 (1968)

    Article  Google Scholar 

  7. S.B. Poole, D.N. Payne, M.E. Fermann, Fabrication of low-loss optical fibers containing rare-earth inons. Electron. Lett. 21(17), 737–738 (1985)

    Article  Google Scholar 

  8. R.J. Mears, L. Reekie, S.B. Poole, D.N. Payne, Neodymium-doped silica single-mode fiber laser. Electron. Lett. 21(17), 738–740 (1985)

    Article  Google Scholar 

  9. R. Mears, L. Reekie, I.M. Jauncey, D.N. Payne, Low-noise erbium-doped fiber amplifier operating at 1.54 μm. Electron. Lett. 23(19), 1026–1028 (1987)

    Article  Google Scholar 

  10. E. Desurvire, J.R. Simpson, P.C. Becker, High-gain erbium-doped travelingwave fiber amplifier. Opt. Lett. 12(11), 888–890 (1987)

    Article  Google Scholar 

  11. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, B.C. McCollum. Double clad, offset core Nd fiber laser, in Optical Fiber Sensors (Optical Society of America, Washington 1988): PD5

    Google Scholar 

  12. J.D. Minelly, E.R. K. Taylor, P. Jedrzejewski, J. Wang, D.N. Payne. Laser-diode-pumped Nd-doped fibre laser with output power > 1 W, in Laser and Electro-Optics, 1992

    Google Scholar 

  13. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bickness, R. Dohle, E. Wolak, P.S. Yeh, E. Zucker, 110 W fibre laser. Electron. Lett. 35(14), 1158–1160 (1999)

    Article  Google Scholar 

  14. Y. Jeong, J.K. Sahu, D.N. Payne, J. Nilsson, Ytterbium-doped large-core fiber laser with 1.36 kW of continuous-wave output power. Opt. Express 12(25), 6088–6092 (2004)

    Article  Google Scholar 

  15. V. Gapontsev, V. Fomin, A. Ferin, M. Abramov. Diffraction limited ultra-high-power fiber lasers, in Advanced Solid-State Photonics (Optical Society of America, Washington, 2010), AWA1

    Google Scholar 

  16. S.W.F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schidt, T. Schreiber, J. Limpert, A. Tünnermann, 131 W 220 fs fiber laser system. Opt. Lett. 30(20), 2754–2756 (2005)

    Article  Google Scholar 

  17. T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 35(2), 94–96 (2010)

    Article  Google Scholar 

  18. H. Takahashi, H. Toba, Y. Inoue, Multiwavelength ring laser composed of EDFAs and an arrayed waveguide wavelength multiplexer. Electron. Lett. 30(1), 44–45 (1994)

    Article  Google Scholar 

  19. T. Miyazaki, N. Edagawa, S. Yamamoto, S. Akiba, A multiwavelength fiber ring-laser employing a pair of silica-based arrayed-waveguide-gratings. IEEE Photon. Technol. Lett. 9(7), 910–912 (1997)

    Article  Google Scholar 

  20. J. Hübner, P. Varming, M. Kristensen, Five wavelength DFB fibre laser source for WDM systems. Electron. Lett. 33(2), 139–140 (1997)

    Article  Google Scholar 

  21. A. Bellemare, M. Rochette, M. Têtu, S. LaRochelle. Multifrequency erbium-doped fiber ring lasers anchored on the ITU frequency grid, in Optical Fiber Communication Conference, OFC: 1999, TuB5

    Google Scholar 

  22. X.S. Liu, L. Zhan, X. Hu, H.G. Li, Q.S. Shen, Y.X. Xia, Multiwavelength erbium-doped fiber laser based on nonlinear polarization rotation assisted by four-wave-mixing. Opt. Commun. 282(14), 2913–2916 (2009)

    Article  Google Scholar 

  23. K. Liu, M. Digonnet, K. Fesler, B.Y. Kim, H.J. Shaw, Broadband diode-pumped fibre laser. Electron. Lett. 24(14), 838–840 (1988)

    Article  Google Scholar 

  24. Y.W. Song, S.A. Havstad, D. Starodubov, Y. Xie, A.E. Willner, J. Feinber, 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG. IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001)

    Article  Google Scholar 

  25. C.H. Yeh, T.T. Huang, H.C. Chien, C.H. Ko, S. Chi, Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation. Opt. Express 15(2), 382–386 (2007)

    Article  Google Scholar 

  26. M.A. Quintela, R.A. Perez-Herrera, I. Canales, M. Fernandez-Vallejo, M. Lopez-Amo, J.M. López-Higuera, Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation. IEEE Photon. Technol. Lett. 22(6), 368–370 (2010)

    Article  Google Scholar 

  27. J. DeMaria, D.A. Stetser, H. Heynau, Self mode-locking of lasers with saturable absorbers. Appl. Phys. Lett. 8(7), 174–176 (1966)

    Article  Google Scholar 

  28. Y. Feng, L.R. Taylor, D.B. Calia, 150 W highly-efficient Raman fiber laser. Opt. Express 17(26), 23678–23683 (2009)

    Article  Google Scholar 

  29. J. Schröder, S. Coen, F. Vanholsbeeck, T. Sylvestre, Passively mode-locked Raman fiber laser with 100 GHz repetition rate. Opt. let. 31(23), 3489–3491 (2006)

    Article  Google Scholar 

  30. M.E. Marhic, K.K.Y. Wong, L.G. Kazovsky, Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers. IEEE J. Sel. Top. Quant. Electron. 10(5), 1133–1141 (2004)

    Article  Google Scholar 

  31. T. Torounidis, P. Andrekson, Broadband single-pumped fiber-optic parametric amplifiers. IEEE Photon. Technol. Lett. 19(9), 650–652 (2007)

    Article  Google Scholar 

  32. Y. Zhou, K.K.Y. Cheung, S. Yang, P.C. Chui, K.K.Y. Wong, Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber. Opt. Lett. 34(7), 989–991 (2009)

    Article  Google Scholar 

  33. G.P. Agrawal, Nonlinear Fiber Optics (Springer, Berlin Heidelberg, 2000)

    Book  MATH  Google Scholar 

  34. Q. Lin, G.P. Agrawal, Raman response function for silica fibers. Opt. Let. 31(21), 3086–3088 (2006)

    Article  Google Scholar 

  35. P.S.J. Russell, Photonic-crystal fibers. J. Lightwave Technol. 24(12), 4729–4749 (2006)

    Article  Google Scholar 

  36. J.C. Knight, T.A. Birks, P.J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19), 1547–1549 (1996)

    Article  Google Scholar 

  37. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.J. Russell, P.J. Roberts, D.C. Allan, Single-mode photonic band gap guidance of light in air. Science 285(5433), 1537–1539 (1999)

    Article  Google Scholar 

  38. E. Mägi, P. Steinvurzel, B. Eggleton, Tapered photonic crystal fibers. Opt. Express 12(5), 776–784 (2004)

    Article  Google Scholar 

  39. F. Benabid, J.C. Knight, G. Antonopoulos, P.J. Russell, Stimulated Raman scattering in hydrogen filled hollow-core photonic crystal fiber. Science 298(5592), 399–402 (2002)

    Article  Google Scholar 

  40. V.V. Kumar, A. George, W. Reeves, J.C. Knight, P.J. Russell, F. Omenetto, A. Taylor, Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express 10(25), 1520–1525 (2002)

    Article  Google Scholar 

  41. H. Han, H. Park, M. Cho, J. Kim, Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett. 80(15), 2634–2636 (2002)

    Article  Google Scholar 

  42. F. Luan, A.K. George, T.D. Hedley, G.J. Pearce, D.M. Bird, J.C. Knight, P.J. Russell, All-solid photonic bandgap fiber. Opt. Lett. 29(20), 2369–2371 (2004)

    Article  Google Scholar 

  43. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135 (2006)

    Article  Google Scholar 

  44. S. Yang, Y. Zhang, L. He, S. Xie, Broadband dispersion-compensating photonic crystal fiber. Opt. let. 31(19), 2830–2832 (2006)

    Article  Google Scholar 

  45. L. Han, L. Liu, Z. Yu, H. Zhao, X. Song, J. Mu, X. Wu, J. Long, X. Liu, Dispersion compensation properties of dual-concentric core photonic crystal fibers. Chin. Opt. Lett. 12(1), 010603 (2014)

    Article  Google Scholar 

  46. X. Fang, M. Hu, C. Xie, Y. Song, L. Chai, C. Wang, High pulse energy mode-locked multicore photonic crystal fiber laser. Opt. Let. 36(6), 1005–1007 (2011)

    Article  Google Scholar 

  47. K. Guo, X. Wang, C. Luo, P. Zhou, B. Shu, Analysis of the maximum extractable power of photonic crystal fiber lasers. Chin. Opt. Lett. 12(s2), 21411 (2014)

    Article  Google Scholar 

  48. H. Liang, W. Zhang, P. Geng, Y. Liu, Z. Wang, J. Guo, S. Gao, S. Yan, Simultaneous measurement of temperature and force with high sensitivities based on filling different index liquids into photonic crystal fiber [J]. Opt. Lett. 38(7), 1071–1073 (2013)

    Article  Google Scholar 

  49. Z. Wang, G. Ren, S. Lou, S. Jian, Supercell lattice method for photonic crystal fibers [J]. Opt. Express 11(9), 980–991 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, L. (2016). Introduction. In: Ultra-Broadly Tunable Light Sources Based on the Nonlinear Effects in Photonic Crystal Fibers. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48360-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48360-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48359-6

  • Online ISBN: 978-3-662-48360-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics