Skip to main content

Chaos Control and Anticontrol of Complex Systems via Parrondo’s Game

  • Chapter
  • First Online:
  • 2915 Accesses

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In this chapter, we prove analytically and numerically aided by computer simulations, that the Parrondo game can be implemented numerically to control and anticontrol chaos of a large class of nonlinear continuous-time and discrete-time systems. The game states that alternating loosing gains of two games, one can actually obtain a winning game, i.e.: “losing \(+\) losing \(=\) winning” or, in other words: “two ugly parents can have beautiful children” (Zeilberger, on receiving the 1998 Leroy P. Steele Prize). For this purpose, the Parameter Switching (PS) algorithm is implemented. The PS algorithm switches the control parameter of the underlying system, within a set of values as the system evolves. The obtained attractor matches the attractor obtained by replacing the parameter with the average of switched values. The systems to which the PS algorithm based Parrondo’s game applies are continuous-time of integer or fractional order ones such as: Lorenz system, Chen system, Chua system, Rössler system, to name just a few, and also discrete-time systems and fractals. Compared with some other works on switch systems, the PS algorithm utilized in this chapter is a convergent algorithm which allows to approximate any desired dynamic to arbitrary accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Also, a and c can be considered as control parameters to match to the form (10.7).

  2. 2.

    There exists no convergence result so far. However, intensively numerical tests reveal, like in the considered example, a good match between the switched attractor and the averaged attractor in the case of fractional-order systems.

  3. 3.

    E.g. the pseudorandom function, found in all dedicated software.

  4. 4.

    In [3, 23], some particular forms of switches are used to study the behavior of alternated orbits for the more accessible quadratic (Mandelbrot) map \(x_{k+1}=x_k^2+p\).

References

  1. Abbot, D.: Assymmetry and disorder: a decade of parrondo’s paradox. Fluct. Noise Lett. 9, 129–156 (2010)

    Article  Google Scholar 

  2. Abbott, D., Davies, P.C.W., Shalizi, C.R.: Order from disorder: the role of noise in creative processes: a special issue on game theory and evolutionary processes -overview. Fluct. Noise Lett. 7(2), 1–12 (2003)

    MathSciNet  Google Scholar 

  3. Almeida, J., Peralta-Salas, D., Romera, M.: Can two chaotic systems give rise to order. Phys. D. 200, 124–132 (2005)

    Article  MathSciNet  Google Scholar 

  4. Amengual, P., Allison, A., Toral, R., Abbott, D.: Discrete-time ratchets, the Fokker-Planck equation and parrondo’s paradox. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460, 2269–2284 (2004)

    Article  MathSciNet  Google Scholar 

  5. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)

    Google Scholar 

  6. Blackwell, D., Girshick, M.A.: Theory of Games and Statistical Decisions. John Wiley, New York (1954)

    Google Scholar 

  7. Blanchard, P., Devaney, R., Keen, L.: Complex dynamics and symbolic dynamics, symbolic dynamics and Its Applications. In: Williams, S.G. (ed.) Proceedings of Symposium in Applied Mathematics 60, pp. 37–60 (2004)

    Google Scholar 

  8. Blanchard, P.: Disconnected Julia sets. In: Barnsley, M., Demko, S. (eds.) Chaotic Dynamics and Fractals, pp. 181–201. Academic Press, San Diego (1986)

    Google Scholar 

  9. Branner, B., Hubbard, J.H.: Iteration of cubic polynomials, part II: patterns and parapatterns. Acta Math. 169, 229–325 (1992)

    Article  MathSciNet  Google Scholar 

  10. Buceta, J., Lindenberg, K., Parrondo, J.M.R.: Spatial patterns induced by random switching. Fluct. Noise Lett. 2(1), L21–L29 (2002)

    Article  MathSciNet  Google Scholar 

  11. Buceta, J., Lindenberg, K., Parrondo, J.M.R.: Stationary and oscillatory spatial patterns induced by global periodic switching. Phys. Rev. Lett. 88, 024103 (2002)

    Article  Google Scholar 

  12. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent–II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967) (reprinted in Fract. Calc. Appl. Anal.) 10(3), 309–324 (2007)

    Google Scholar 

  13. Li, C., Chen, G.: Chaos in the fractional order Chen system and its control. Chaos Soliton. Fract. 22(3), 549–554 (2004)

    Article  Google Scholar 

  14. Danca, M.F., Fečkan, M., Romera, M.: Generalized Form of Parrondo’s Paradoxical Game with Applications to Chaos Control. Int. J. Bifurcat. Chaos. 2014, Accepted

    Google Scholar 

  15. Danca, M.F., Bourke, P., Romera, M.: Graphical exploration of the connectivity sets of alternated Julia sets; M, the set of disconnected alternated Julia sets. Nonlinear Dynam. 73, 1155–1163 (2013)

    Article  MathSciNet  Google Scholar 

  16. Danca, M.F., Wallace, K.S.: Tang, Chen, G.: A switching scheme for synthesizing attractors of dissipative chaotic systems. Appl. Math. Comput. 201(1–2), 650–667 (2008)

    Article  MathSciNet  Google Scholar 

  17. Danca, M.F., Romera, M., Pastor, G.: Alternated Julia sets and connectivity properties. Int. J. Bifurcat. Chaos. 19(6), 2123–2129 (2009)

    Article  MathSciNet  Google Scholar 

  18. Davies, P.C.W.: Physics and life: The Abdus Salam Memorial Lecture. 6th Trieste Conference on Chemical Evolution. Eds: J. Chela-Flores, T. Tobias, and F. Raulin. Kluwer Academic Publishers, 13–20 (2001)

    Google Scholar 

  19. Drebin, R.A., Carpenter, L., Hanrahan, P.: Volume rendering. In: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 88), Vol. 22 pp. 65–74 (1988)

    Google Scholar 

  20. Fatou, P.: Sur les équations fonctionnelles. B. Soc. Math. Fr. 47 (1919) 161–271; 48 (1920) 33–94; 48 (1920) 208–314. http://smf.emath.fr/Publications/Bulletin/

  21. Fečan, M., Danca, M.F.: Note on a Parameter Switching Method for Nonlinear ODEs. Math. Slovaca. Accepted (2014)

    Google Scholar 

  22. Foias, C., Jolly, M.S.: On the numerical algebraic approximation of global attractors. Nonlinearity 8, 295–319 (1995)

    Article  MathSciNet  Google Scholar 

  23. Fulai, W.: Improvement and empirical research on chaos control by theory of “chaos+chaos=order”. CHAOS 22, 043145 (2012)

    Article  Google Scholar 

  24. Groeber, P.: On Parrondos games as generalized by behrends. Lect. Notes Cont. Inform. Sci. 341, 223–230 (2006)

    Article  MathSciNet  Google Scholar 

  25. Hale, J.K.: Ordinary Differential Equations. Dover Publications, New York (2009) (first published: John Wiley & Sons (1969)

    Google Scholar 

  26. Heath, D., Kinderlehrer, D., Kowalczyk, M.: Discrete and continuous ratchets: from coin toss to molecular motor. Discrete Cont. Dyn.-B. 2,153–167 (2002)

    Google Scholar 

  27. Julia, G.: Mémoire sur l’itération des fonctions rationnelles. J. Math. Pure Appl. 8, 47–245 (1918)

    Google Scholar 

  28. Lee, Y., Allison, A., Abbott, D., Stanley, H.E.: Minimal Brownian ratchet: an exactly solvable model. Phys. Rev. Lett. 91, 220601 (2003)

    Article  MathSciNet  Google Scholar 

  29. Li, C., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Soliton. Fract. 22(2), 443–450 (2004)

    Article  MathSciNet  Google Scholar 

  30. Li, C., Zeng, F.: Finite difference methods for fractional differential equations. Int. J. Bifurcat. Chaos. 22(4), 1230014 (2012)

    Article  MathSciNet  Google Scholar 

  31. Limaye, A.: Drishti: a volume exploration and presentation tool. In: Proceedings SPIE 8506, Developments in X-Ray Tomography VIII, 85060X (2012)

    Google Scholar 

  32. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1977)

    Google Scholar 

  33. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order. Academic Press, New York (1974)

    Google Scholar 

  34. Parrondo, J.M.R., Harmer, G.P., Abbott, D.: New paradoxical games based on Brownian ratchets. Phys. Rev. Lett. 85, 5226–5229 (2000)

    Article  Google Scholar 

  35. Peitgen, H.O., Saupe, D.: The Science of Fractal Images. Springer, New York (1988)

    Google Scholar 

  36. Percus, O.E., Percus, J.K.: Can two wrongs make a right? Coin-tossing games and parrondo’s paradox. Math. Intell. 24, 68–72 (2002)

    Article  MathSciNet  Google Scholar 

  37. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  38. Qiu, W., Yin, Y.: Proof of the Branner-Hubbard conjecture on Cantor Julia sets. Sci. China Ser. A. 52(1), 45–65 (2009)

    Article  MathSciNet  Google Scholar 

  39. Romera, M., Pastor, G., Danca, M.F., Martin, A., Orue, A.B., Montoya, F.: Alternate iteration of a quadratic map. Int. J. Bifurcat. Chaos. Accepted (2014)

    Google Scholar 

  40. Romera, M., Small, M., Danca, M.F.: Deterministic and random synthesis of discrete chaos. Appl. Math. Comput. 192(1), 283–297 (2007)

    Article  MathSciNet  Google Scholar 

  41. Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grünwald-Letnikov method for fractional differential equations. Comput. Math. Appl. 62(3), 902–917 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius-F. Danca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Danca, MF. (2016). Chaos Control and Anticontrol of Complex Systems via Parrondo’s Game. In: Lü, J., Yu, X., Chen, G., Yu, W. (eds) Complex Systems and Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47824-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47824-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47823-3

  • Online ISBN: 978-3-662-47824-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics