Skip to main content

Economic Models with Exogenous Continuous/Discrete Shocks

  • Chapter
  • First Online:
Replication of Chaos in Neural Networks, Economics and Physics

Part of the book series: Nonlinear Physical Science ((NPS))

  • 1265 Accesses

Abstract

In this section, we investigate the generation of chaos in economic models with equilibria through exogenous shocks. The perturbation is formulated as a pulse function where either values or instants of discontinuity are chaotically behaved. We provide a rigorous proof of the existence of chaos in the perturbed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There exists a third approach, which is somewhere in between the two, where Iterated Function Systems generated by the optimal policy functions for a class of stochastic growth models converge to invariant distributions with support over fractal sets [8].

References

  1. W.J. Baumol, J. Benhabib, Chaos: significance, mechanism, and economic applications. J. Econ. Perspect. 3, 77–105 (1989)

    Article  Google Scholar 

  2. M. Boldrin, L. Montrucchio, On the indeterminacy of capital accumulation paths. J. Econ. Theory 40, 26–39 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. R.H. Day, The emergence of chaos from classical economic growth. Q. J. Econ. 98, 201–213 (1983)

    Article  ADS  Google Scholar 

  4. R. Goodwin, Chaotic Economic Dynamics (Oxford University Press, Oxford, 1990)

    Book  Google Scholar 

  5. T.R. Malthus, An Essay on the Principle of Population, As It Affects the Future Improvement of Society, with Remarks on the Speculations of Mr. Godwin, M. Condorcet, and Other Writers (J. Johnson, London, 1798)

    Google Scholar 

  6. A. Marshall, Principles of Economics (Macmillan, London, 1920)

    Google Scholar 

  7. J.B. Rosser Jr, From Catastrophe to Chaos: A General Theory of Economic Discontinuities, 2nd edn. (Kluwer Academic Publishers, Norwell, 2000)

    Book  Google Scholar 

  8. T. Mitra, F. Privileggi, On Lipschitz continuity of the Iterated Function System in a stochastic optimal growth model. J. Math. Econ. 45, 185–198 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  Google Scholar 

  10. R.L. Devaney, An Introduction to Chaotic Dynamical Systems (Addison-Wesley, Menlo Park, 1989)

    MATH  Google Scholar 

  11. J. Gleick, Chaos: The Making of a New Science (Viking, New York, 1987)

    MATH  Google Scholar 

  12. H.W. Lorenz, Nonlinear Dynamical Economics and Chaotic Motion (Springer, New York, 1993)

    Book  MATH  Google Scholar 

  13. W.B. Zhang, Differential Equations, Bifurcations, and Chaos in Economics (World scientific, Singapore, 2005)

    Book  MATH  Google Scholar 

  14. J.M. Gonzáles-Miranda, Synchronization and Control of Chaos (Imperial College Press, London, 2004)

    Book  Google Scholar 

  15. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–825 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Y. Zhou, M. Zhiyuan, L. Wang, Chaotic dynamics of the flood series in the Huaihe river basin for the last 500 years. J. Hydrol. 258, 100–110 (2002)

    Article  ADS  Google Scholar 

  17. G.P. Decoster, W.C. Labys, D.W. Mitchell, Evidence of chaos in commodity futures prices. J. Futures Markets 12(3), 291–305 (1992)

    Article  Google Scholar 

  18. A. Wei, R.M. Leuthold, Long agricultural futures prices: ARCH, long memory, or chaos processes? OFOR Paper 98–03, University of Illinois at Urbana-Champaign, Urbana, 1998

    Google Scholar 

  19. E. Panas, V. Ninni, Are oil markets chaotic? A non-linear dynamic analysis. Energy Econ. 22, 549–568 (2000)

    Article  Google Scholar 

  20. W.A. Brock, Distinguishing random and deterministic systems: abridged version. J. Econ. Theory 40, 168–195 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. W.A. Brock, W. Dechert, J.A. Scheinkman, B. LeBaron, A test for independence based on the correlation dimension. Econ. Rev. 15, 197–235 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Benhabib, Chaotic dynamics in economics. Forthcoming in The New Palgrave Dictionary of Economics, ed. by S.N. Durlauf, L.E. Blume (Macmillan, Palgrave, 2005)

    Google Scholar 

  23. H. Sakai, H. Tokumaru, Autocorrelations of a certain chaos. IEEE Trans. Acoust. Speech Signal Process 28, 588–590 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Medio, G. Gallo, Chaotic dynamics, Theory and Applications to Economics (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  25. H.W. Lorenz, International trade and the possible occurrence of chaos. Econ. Lett. 23, 135–138 (1987)

    Article  MathSciNet  Google Scholar 

  26. J. Benhabib, R.H. Day, Erratic accumulation. Econ. Lett. 6, 113–117 (1980)

    Article  Google Scholar 

  27. J. Benhabib, R.H. Day, A characterization of erratic dynamics in the overlapping generations model. J. Econ. Dyn. Control 4, 37–55 (1982)

    Article  MathSciNet  Google Scholar 

  28. J. Benhabib, K. Nishimura, The Hopf bifurcation and the existence and stability of closed orbits in multisector models of optimal economic growth. J. Econ. Theory 21, 421–444 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Deneckere, S. Pelikan, Competitive chaos. J. Econ. Theory 40, 13–25 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. J.M. Grandmont, On endogenous competitive business cycles. Econometrica 53, 995–1045 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Nishimura, G. Sorger, M. Yano, Ergodic chaos in optimal growth models with low discount rates. Econ. Theory 4, 705–717 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. K. Nishimura, M. Yano, Non-linear dynamics and chaos in optimal growth: an example. Econometrica 63, 981–1001 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Mitra, G. Sorger, On the existence of chaotic policy functions in dynamic optimization. Jpn. Econ. Rev. 50(4), 470–484 (1999)

    Article  Google Scholar 

  34. D.A. Mendes, V. Mendes, Control of chaotic dynamics in an OLG economic model. J. Phys.: Conf. Ser. 23, 158–181 (2005)

    ADS  Google Scholar 

  35. F. Dyson, Infinite in All Directions (Harper & Row, New York, 1988)

    Google Scholar 

  36. G. Chen, B. Raton (eds.), Controlling Chaos and Bifurcation in Engineering Systems (CRS Press, West Palm Beach, 2000)

    Google Scholar 

  37. G. Chen, X. Yu (eds.), Chaos control, Theory and Applications (Springer, Berlin, 2003)

    Google Scholar 

  38. T. Kapitaniak, Controlling Chaos: Theoretical and Practical Methods in Non-linear Dynamics (Butler and Tanner Ltd., Frome, 1996)

    MATH  Google Scholar 

  39. E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. K. Pyragas, Continuous control of chaos by self-controlling feedback. Phys. Rev. A 170, 421–428 (1992)

    Google Scholar 

  41. E. Schöll, H.G. Schuster, Handbook of Chaos Control (Wiley, Weinheim, 2008)

    MATH  Google Scholar 

  42. T. Shinbrot, E. Ott, C. Grebogi, J.A. Yorke, Using chaos to direct trajectories to targets. Phys. Rev. Lett. 65, 3215–3218 (1990)

    Article  ADS  Google Scholar 

  43. J.A. Holyst, T. Hagel, G. Haag, W. Weidlich, How to control a chaotic economy? J. Evolut. Econ. 6(1), 31–42 (1996)

    Article  Google Scholar 

  44. J.A. Holyst, K. Urbanowicz, Chaos control in economical model by time delayed feedback method. Phys. A: Stat. Mech. Appl. 287(3–4), 587–598 (2000)

    Article  Google Scholar 

  45. E. Ahmed, S.Z. Hassan, On controlling chaos in Cournot games with two and three competitors. Nonlinear Dyn. Psychol. Life Sci. 4, 189–194 (2000)

    Article  MATH  Google Scholar 

  46. H. Salarieh, A. Alasty, Chaos control in an economic model via minimum entropy strategy. Chaos Solut. Fractals 40, 839–847 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. L. Chen, G. Chen, Controlling chaos in an economic model. Phys. A: Stat. Mech. Appl. 374(1), 349–358 (2007)

    Article  Google Scholar 

  48. D. Behrens, Two and three-dimensional models of the army races, Diplomarbeit, Institut fur Okonometrie, Operations Research and Systemtheorie, Technische Universitat Wien (1992)

    Google Scholar 

  49. G. Feichtinger, Nonlinear threshold dynamics: further examples for chaos in social sciences, in Economic Evolution and Demographic Change, ed. by G. Haag, U. Mueller, K.G. Troitzsh (Springer, Berlin, 1992)

    Google Scholar 

  50. L. Kaas, Stabilizing chaos in a dynamic macroeconomic model. J. Econ. Behav. Organ. 33, 313–332 (1998)

    Article  Google Scholar 

  51. V. Bala, M. Majumdar, T. Mitra, A note on controlling a chaotic tatonnement. J. Econ. Behav. Organ. 33, 411–420 (1998)

    Article  Google Scholar 

  52. M. Kopel, Improving the performance of an economic system: controlling chaos. J. Evol. Econ. 7, 269–289 (1997)

    Article  Google Scholar 

  53. G. Haag, T. Hagel, T. Sigg, Active stabilization of a chaotic urban system. Discrete Dyn. Nat. Soc. 1, 127–134 (1997)

    Article  MATH  Google Scholar 

  54. C. Wieland, F.H. Westerhoff, Exchange rate dynamics, central bank interventions and chaos control methods. J. Econ. Behav. Organ. 4(2), 189–194 (2005)

    Google Scholar 

  55. W.A. Barnett, P. Chen, The aggregation-theoretic monetary aggregates are chaotic and have strange attractors: An econometric application of mathematical chaos, 199–246, in Proceedings of the Third International Symposium in Economic Theory and Econometrics, ed. by W.A. Barnett, E. Berndt, H. White (Cambridge University Press, Cambridge, 1988)

    Google Scholar 

  56. M. Frank, T. Stengos, Measuring the strangeness of gold and silver rates of return. Rev. Econ. Stud. 56, 553–567 (1989)

    Article  Google Scholar 

  57. J. Guckenheimer, P.J. Holmes, Nonlinear oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, New York, 1997)

    Google Scholar 

  58. M. Ausloos, M. Dirickx (eds.), The Logistic Map and the Route to Chaos: From the Beginnings to Modern Applications (Understanding Complex Systems) (Springer, Berlin, 2010)

    Google Scholar 

  59. M.U. Akhmet, Devaney’s chaos of a relay system. Commun. Nonlinear Sci. Numer. Simulat. 14, 1486–1493 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. M.U. Akhmet, M.O. Fen, Chaotic period-doubling and OGY control for the forced Duffing equation. Commun. Nonlinear. Sci. Numer. Simulat. 17, 1929–1946 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. J.K. Hale, Ordinary Differential Equations (Krieger Publishing Company, Malabar, 1980)

    MATH  Google Scholar 

  62. M. Akhmet, Nonlinear Hybrid Continuous/Discrete-Time Models (Atlantis Press, Paris, 2011)

    Book  Google Scholar 

  63. M.J. Feigenbaum, Universal behavior in nonlinear systems. Los Alamos Sci./Summer 1, 4–27 (1980)

    MathSciNet  Google Scholar 

  64. P.A. Samuelson, Foundations of Economic Analysis (Harvard University Press, Cambridge, 1947)

    MATH  Google Scholar 

  65. M. Allais, The economic science of today and global disequilibrium, in Global Disequilibrium in the World Economy, ed. by M. Baldassarry, J. McCallum, R.A. Mundell (Macmillan, Basingstoke, 1992)

    Google Scholar 

  66. M. Akhmet, Principles of Discontinuous Dynamical Systems (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  67. M.U. Akhmet, Li-Yorke chaos in the system with impacts. J. Math. Anal. Appl. 351, 804–810 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. M.U. Akhmet, M.O. Fen, Replication of chaos. Commun. Nonlinear. Sci. Numer. Simulat. 18, 2626–2666 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. F.E. Kydland, E.C. Prescott, Time to build and aggregate fluctuations. Econometrica 50, 1345–1370 (1982)

    Article  MATH  Google Scholar 

  70. B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling, Human Uncertainty (Springer, Berlin, 2010)

    Book  Google Scholar 

  71. J.B. Long Jr, C.I. Plosser, Real business cycles. J. Polit. Econ. 91, 39–69 (1983)

    Article  Google Scholar 

  72. G. Mircea, M. Neamt, D. Opris, The KaldorKalecki stochastic model of business cycle. Nonlinear Anal.: Model. Control 16, 191–205 (2011)

    MathSciNet  MATH  Google Scholar 

  73. D. Rand, Exotic phenomena in games and duopoly models. J. Math. Econ. 5, 173–184 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  74. R.H. Day, W.J. Shafer, Keynesian chaos. J. Macroecon. 7, 277–295 (1985)

    Article  Google Scholar 

  75. M. Stutzer, Chaotic dynamics and bifurcations in a macro model. J. Econ. Dyn. Control 2, 353–376 (1980)

    Article  MathSciNet  Google Scholar 

  76. R.H. Day, Irregular growth cycles. Am. Econ. Rev. 72, 406–414 (1982)

    Google Scholar 

  77. R.A. Dana, P. Malgrange, The dynamics of a discrete version of a growth cycle model, in Analyzing the Structure of Econometric Models, ed. by J.P. Ancot (M. Nijhoff, Amsterdam, 1984)

    Google Scholar 

  78. M.T. Pohjola, Stable, cyclic and chaotic growth: a dynamics of a discrete time version of Goodwin’s growth cycle model. Zeitsschrift fur Nationalekonomie 41, 27–38 (1981)

    Article  MATH  Google Scholar 

  79. J.M. Blatt, Dynamic economic systems: a post-Keynesian approach (M.E. Sharpe, Armonk, 1983)

    Google Scholar 

  80. G. Gabish, Nonlinear models of business cycle theory, in Selected Topics in Operations Research and Mathematical Economics, ed. by G. Hammer, D. Pallaschke (Springer, Berlin, 1984), pp. 205–222

    Chapter  Google Scholar 

  81. H. Nusse, Asymptotically periodic behavior in the dynamics of chaotic mappings. SIAM J. Appl. Math. 47, 498–515 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  82. J.R. Hicks, A Contribution to the Theory of the Trade Cycle (Oxford University Press, Oxford, 1950)

    Google Scholar 

  83. W.A. Brock, Hicksian nonlinearity, SSRI Paper No. 8815, University of Wisconsin-Madison (1988)

    Google Scholar 

  84. M.U. Akhmet, M.O. Fen, Entrainment by chaos. J. Nonlinear Sci. 24, 411–439 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  85. L. Kocarev, U. Parlitz, Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76(11), 1816–1819 (1996)

    Article  ADS  Google Scholar 

  86. N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D.I. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51(2), 980–994 (1995)

    Article  ADS  Google Scholar 

  87. H. Haken, Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices (Springer, Berlin, 1983)

    Google Scholar 

  88. M. Akhmet, Z. Akhmetova, M.O. Fen, Chaos in economic models with exogenous shocks. J. Econ. Behav. Organ. 106, 95–108 (2014)

    Article  Google Scholar 

  89. L. Pribylova, Bifurcation routes to chaos in an extended Van der Pol’s equation applied to economic models. Electron. J. Diff. Equ. 2009, 1–21 (2009)

    MathSciNet  Google Scholar 

  90. C. Zhang, J. Wei, Stability and bifurcation analysis in a kind of business cycle model with delay. Chaos Solitons Fractals 22, 883–896 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  91. M. Szydlowski, A. Krawiec, J. Tobola, Nonlinear oscillations in business cycle model with time lags. Chaos Solitons Fractals 12, 505–517 (2001)

    Article  ADS  MATH  Google Scholar 

  92. L. Wang, X.P. Wu, Bifurcation analysis of a Kaldor-Kalecki model of business cycle with time delay. Electron. J. Qual. Theory Diff. Equ. (27), 1–20 (2009)

    Google Scholar 

  93. H.G. Schuster, Handbook of Chaos Control (Wiley, Weinheim, 1999)

    Book  MATH  Google Scholar 

  94. R.M. Goodwin, The nonlinear accelerator and the persistence of business cycles. Econometrica 19, 1–17 (1951)

    Article  MATH  Google Scholar 

  95. U. Parlitz, W. Lauterborn, Period-doubling cascades and devil’s staircases of the driven Van der Pol oscillator. Phys. Rev. A. 36, 1428–1434 (1987)

    Article  ADS  Google Scholar 

  96. J.M.T. Thompson, H.B. Stewart, Nonlinear Dynamics and Chaos (Wiley, Chichester, 2002)

    Google Scholar 

  97. H.D.I. Abarbanel, N.F. Rulkov, M.M. Sushchik, Generalized synchronization of chaos: the auxiliary system approach. Phys. Rev. E 53, 4528–4535 (1996)

    Article  ADS  Google Scholar 

  98. B.R. Hunt, E. Ott, J.A. Yorke, Differentiable generalized synchronization of chaos. Phys. Rev. E 55(4), 4029–4034 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  99. G. Nicolis, I. Prigogine, Exploring Complexity: An Introduction (W.H. Freeman, New York, 1989)

    Google Scholar 

  100. F. Durrenmatt, The Physicists (Grove, New York, 1964)

    Google Scholar 

  101. A.A. Andronov, A.A. Vitt, C.E. Khaikin, Theory of Oscillations (Pergamon Press, Oxford, 1966)

    Google Scholar 

  102. F.C. Moon, Chaotic Vibrations: An Introduction For Applied Scientists and Engineers (Wiley, Hoboken, 2004)

    Book  Google Scholar 

  103. J.D. Murray, Mathematical biology II: spatial models and biomedical applications (Springer, New York, 2003)

    Google Scholar 

  104. M.A. Vorontsov, W.B. Miller, Self-organization in Optical Systems and Applications in Information Technology (Springer, Berlin, 1998)

    Book  Google Scholar 

  105. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., Ser. B, Biol. Sci. 237, 37–72 (1952)

    Article  ADS  Google Scholar 

  106. S. Bouali, Feedback loop in extended Van der Pol’s equation applied to an economic model of cycles. Int. J. Bifurc. Chaos 9, 745–756 (1999)

    Article  MATH  Google Scholar 

  107. S. Bouali, A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, Emulating complex business cycles by using an electronic analogue. Nonlinear Anal.: Real World Appl. 13, 2459–2465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  108. G. Gabisch, H.-W. Lorenz, Business Cycle Theory (Springer, New York, 1987)

    Book  Google Scholar 

  109. L. Fanti, P. Manfredi, Chaotic business cycles and fiscal policy: an IS-LM model with distributed tax collection lags. Chaos Solitons Fractals 32, 736–744 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  110. M.W. Hirsch, S. Smale, Differential Equations, Dynamical Systems and Linear Algebra (Academic Press, New York, 1974)

    MATH  Google Scholar 

  111. W.A. Brock, Distinguishing random and deterministic system: abridged version. J. Econ. Theory 40, 168–195 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  112. V. Atella, M. Centoni, G. Cubadda, Technology shocks, structural breaks and the effects on the business cycle. Econ. Lett. 100, 392–395 (2008)

    Article  Google Scholar 

  113. J. Gali, Technology, employment and the business cycle: do technology shocks explain aggregate fluctuations? Am. Econ. Rev. 89, 249–271 (1999)

    Article  Google Scholar 

  114. M. Akhmet, Z. Akhmetova, M.O. Fen, Exogenous versus endogenous for chaotic business cycles. Interdiscip. J. Discontin. Nonlinearity Complex. (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat Akhmet .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akhmet, M., Fen, M.O. (2016). Economic Models with Exogenous Continuous/Discrete Shocks. In: Replication of Chaos in Neural Networks, Economics and Physics. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47500-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47500-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47499-0

  • Online ISBN: 978-3-662-47500-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics