Skip to main content

A Global Eigenvalue-Driven Balanced Deconvolution Approach for Network Direct-Coupling Analysis

  • Conference paper
  • 2395 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 484))

Abstract

It is an important and unsettled issue to distinguish direct dependencies from the indirect ones without any prior knowledge in biological networks and social networks, which contain important biological features and co-authorship information. We present a new algorithm, called balanced network deconvolution (BND), by exploiting eigen-decomposition and the statistical behavior of the eigenvalues of random symmetric matrices. Specially, the BND is a parameter-free algorithm that can be directly applied to different networks. Experimental results establish BND as a robust and general approach for filtering the transitive noise on various input matrices generated by different prediction algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Newman, M.E.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Marbach, D., et al.: Wisdom of crowds for robust gene network inference. Nature Methods (2012)

    Google Scholar 

  3. Wu, S., Zhang, Y.: A comprehensive assessment of sequence-based and template-based methods for protein contact prediction. Bioinformatics 24(7), 924–931 (2008)

    Article  Google Scholar 

  4. Otte, E., Rousseau, R.: Social network analysis: a powerful strategy, also for the information sciences. Journal of Information Science 28(6), 441–453 (2002)

    Article  Google Scholar 

  5. Feizi, S., et al.: Network deconvolution as a general method to distinguish direct dependencies in networks. Nat. Biotechnol. 31(8), 726–733 (2013)

    Article  Google Scholar 

  6. Jones, D.T., et al.: PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics 28(2), 184–190 (2012)

    Article  Google Scholar 

  7. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference. Foundations and Trends® in Machine Learning 1(1-2), 1–305 (2008)

    MATH  Google Scholar 

  8. Burger, L., van Nimwegen, E.: Accurate prediction of protein-protein interactions from sequence alignments using a Bayesian method. Mol. Syst. Biol. 4, 165 (2008)

    Article  Google Scholar 

  9. Weigt, M., et al.: Identification of direct residue contacts in protein–protein interaction by message passing. Proceedings of the National Academy of Sciences 106(1), 67–72 (2009)

    Article  Google Scholar 

  10. Morcos, F., et al.: Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proceedings of the National Academy of Sciences 108(49), E1293–E1301 (2011)

    Google Scholar 

  11. Chiu, D.K., Kolodziejczak, T.: Inferring consensus structure from nucleic acid sequences. Computer Applications in the Biosciences: CABIOS 7(3), 347–352 (1991)

    Google Scholar 

  12. Faith, J.J., et al.: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology 5(1), e8 (2007)

    Google Scholar 

  13. Butte, A.J., Kohane, I.S.: Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In: Pac. Symp. Biocomput. (2000)

    Google Scholar 

  14. Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PloS One 5(9), e12776 (2010)

    Google Scholar 

  15. Haury, A.-C., et al.: TIGRESS: trustful inference of gene regulation using stability selection. BMC Systems Biology 6(1), 145 (2012)

    Article  Google Scholar 

  16. Greenfield, A., et al.: DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models. PloS One 5(10), e13397 (2010)

    Google Scholar 

  17. Küffner, R., et al.: Inferring gene regulatory networks by ANOVA. Bioinformatics 28(10), 1376–1382 (2012)

    Article  Google Scholar 

  18. Wigner, E.P.: Random matrices in physics. Siam Review 9(1), 1–23 (1967)

    Article  MATH  Google Scholar 

  19. Newman, M.E.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E 64(1), 016132 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, HP., Shen, HB. (2014). A Global Eigenvalue-Driven Balanced Deconvolution Approach for Network Direct-Coupling Analysis. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45643-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45643-9_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45642-2

  • Online ISBN: 978-3-662-45643-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics