Skip to main content

Abstract

Taking into account the extremely broad range of chemical and structural possibilities of ionic liquid (IL) chemistry, and the undeniable economical and engineering advantages of membrane technology, the CO2 separation performance of membranes based on poly(ionic liquid)s (PILs) is here discussed. A perspective of the different membrane-designing strategies, including neat PIL membranes having polycation backbones, PIL/IL composites, different frameworks of PIL copolymer membranes, and PIL/IL/zeolite mixed matrix membranes, will be presented. Due to the promising data obtained for this new class of functional polymers, combining some of the exceptional and unique properties of ILs with the macromolecular architecture of polymers, it is foreseen that PIL-based membranes will play a especial role in CO2 separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jacobson MZ (2009) Review of solutions to global warming, air pollution, and energy security. Energ Environ Sci 2(2):148–173

    Google Scholar 

  2. Scholes CA, Stevens GW, Kentish SE (2012) Membrane gas separation applications in natural gas processing. Fuel 96:15–28

    Google Scholar 

  3. Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD (2008) Advances in CO2 capture technology – the U.S. department of energy’s carbon sequestration program. Int J Greenhouse Gas Contr 2(1):9–20

    Google Scholar 

  4. Anderson S, Newell R (2004) Prospects for carbon capture and storage technologies. Annu Rev Environ Resour 29:109–142

    Google Scholar 

  5. Metz B, Davidson O, Coninck Hd, Loos M, Meyer L (2005) IPCC special report on carbon dioxide capture and storage. Other Information: IEACR LIB 700. Cambridge University Press, New York, USA

    Google Scholar 

  6. Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40(1–3):321–348

    Google Scholar 

  7. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27

    Google Scholar 

  8. Ebner AD, Ritter JA (2009) State-of-the-Art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep Sci Technol 44(6):1273–1421

    Google Scholar 

  9. Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications – a review. Energy 35(6):2610–2628

    Google Scholar 

  10. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CK, Shah N, Fennell P (2010) An overview of CO2 capture technologies. Energ Environ Sci 3(11):1645–1669

    Google Scholar 

  11. Kenarsari SD, Yang D, Jiang G, Zhang S, Wang J, Russell AG, Wei Q, Fan M (2013) Review of recent advances in carbon dioxide separation and capture. RSC Adv 3:22739–22773

    Google Scholar 

  12. Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325(5948):1652–1654

    ADS  Google Scholar 

  13. Earle MJ, Esperanca JMSS, Gilea MA, Canongia Lopes JN, Rebelo LPN, Magee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439(7078):831–834

    ADS  Google Scholar 

  14. Anderson JL, Ding R, Ellern A, Armstrong DW (2004) Structure and properties of high stability geminal dicationic ionic liquids. J Am Chem Soc 127(2):593–604

    Google Scholar 

  15. Smiglak M, Reichert WM, Holbrey JD, Wilkes JS, Sun L, Thrasher JS, Kirichenko K, Singh S, Katritzky AR, Rogers RD (2006) Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem Commun (24):2554–2556

    Google Scholar 

  16. Ohno H, Yoshizawa M, Mizumo T (2005) Ionic conductivity. In: Ohno H (ed) Electrochemical aspects of ionic liquids. Wiley, Hoboken

    Google Scholar 

  17. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2083

    Google Scholar 

  18. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111(5):3508–3576

    Google Scholar 

  19. Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72(7):1391–1398

    Google Scholar 

  20. Rogers RD, Seddon KR (2003) Ionic liquids-solvents of the future? Science 302(5646):792–793

    Google Scholar 

  21. Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41(11):3739–3749

    ADS  Google Scholar 

  22. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150

    Google Scholar 

  23. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8(8):621–629

    ADS  Google Scholar 

  24. Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD (2009) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48(6):2739–2751

    Google Scholar 

  25. Hasib-ur-Rahman M, Siaj M, Larachi F (2010) Ionic liquids for CO2 capture–development and progress. Chem Eng Process Process Intensification 49(4):313–322

    Google Scholar 

  26. Brennecke JF, Gurkan BE (2010) Ionic liquids for CO2 capture and emission reduction. J Phys Chem Lett 1(24):3459–3464

    Google Scholar 

  27. Ramdin M, de Loos TW, Vlugt TJH (2012) State-of-the-Art of CO2 capture with ionic liquids. Ind Eng Chem Res 51(24):8149–8177

    Google Scholar 

  28. Zhang X, Zhang X, Dong H, Zhao Z, Zhang S, Huang Y (2012) Carbon capture with ionic liquids: overview and progress. Energ Environ Sci 5(5):6668–6681

    Google Scholar 

  29. Hu Y-F, Liu Z-C, Xu C-M, Zhang X-M (2011) The molecular characteristics dominating the solubility of gases in ionic liquids. Chem Soc Rev 40(7):3802–3823

    Google Scholar 

  30. Shannon MS, Bara JE (2011) Reactive and reversible ionic liquids for CO2 capture and acid gas removal. Sep Sci Technol 47(2):178–188

    Google Scholar 

  31. Sistla YS, Jain L, Khanna A (2012) Validation and prediction of solubility parameters of ionic liquids for CO2 capture. Sep Purif Technol 97:51–64

    Google Scholar 

  32. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126(16):5300–5308

    Google Scholar 

  33. Anthony JL, Anderson JL, Maginn EJ, Brennecke JF (2005) Anion effects on gas solubility in ionic liquids. J Phys Chem B 109(13):6366–6374

    Google Scholar 

  34. Anderson JL, Dixon JK, Brennecke JF (2007) Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium Bis(trifluoromethylsulfonyl)imide: comparison to other ionic liquids. Acc Chem Res 40(11):1208–1216

    Google Scholar 

  35. Muldoon MJ, Aki SNVK, Anderson JL, Dixon JK, Brennecke JF (2007) Improving carbon dioxide solubility in ionic liquids. J Phys Chem B 111(30):9001–9009

    Google Scholar 

  36. Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124(6):926–927

    Google Scholar 

  37. Baltus RE, Culbertson BH, Dai S, Luo H, DePaoli DW (2003) Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance. J Phys Chem B 108(2):721–727

    Google Scholar 

  38. Camper D, Bara JE, Gin DL, Noble RD (2008) Room-temperature ionic liquid − amine solutions: tunable solvents for efficient and reversible capture of CO2. Ind Eng Chem Res 47(21):8496–8498

    Google Scholar 

  39. Carlisle TK, Bara JE, Gabriel CJ, Noble RD, Gin DL (2008) Interpretation of CO2 solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach. Ind Eng Chem Res 47(18):7005–7012

    Google Scholar 

  40. Smith GD, Borodin O, Li L, Kim H, Liu Q, Bara JE, Gin DL, Nobel R (2008) A comparison of ether- and alkyl-derivatized imidazolium-based room-temperature ionic liquids: a molecular dynamics simulation study. Phys Chem Chem Phys 10(41):6301–6312

    Google Scholar 

  41. Almantariotis D, Gefflaut T, Pádua AAH, Coxam JY, Costa Gomes MF (2010) Effect of fluorination and size of the alkyl side-chain on the solubility of carbon dioxide in 1-alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide ionic liquids. J Phys Chem B 114(10):3608–3617

    Google Scholar 

  42. Wu C, Senftle TP, Schneider WF (2012) First-principles-guided design of ionic liquids for CO2 capture. Phys Chem Chem Phys 14(38):13163–13170

    Google Scholar 

  43. Wang G, Hou W, Xiao F, Geng J, Wu Y, Zhang Z (2011) Low-viscosity triethylbutylammonium acetate as a task-specific ionic liquid for reversible CO2 absorption. J Chem Eng Data 56(4):1125–1133

    Google Scholar 

  44. Gurau G, Rodríguez H, Kelley SP, Janiczek P, Kalb RS, Rogers RD (2011) Demonstration of chemisorption of carbon dioxide in 1,3-dialkylimidazolium acetate ionic liquids. Angew Chem Int Ed 50(50):12024–12026

    Google Scholar 

  45. Goodrich BF, de la Fuente JC, Gurkan BE, Lopez ZK, Price EA, Huang Y, Brennecke JF (2011) Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids. J Phys Chem B 115(29):9140–9150

    Google Scholar 

  46. Goodrich BF, de la Fuente JC, Gurkan BE, Zadigian DJ, Price EA, Huang Y, Brennecke JF (2010) Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide. Ind Eng Chem Res 50(1):111–118

    Google Scholar 

  47. Wang C, Luo X, Luo H, Jiang D-E, Li H, Dai S (2011) Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew Chem Int Ed 50(21):4918–4922

    Google Scholar 

  48. Scovazzo P (2009) Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research. J Membr Sci 343(1–2):199–211

    Google Scholar 

  49. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663

    Google Scholar 

  50. Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble R (2004) Gas separations using non-hexafluorophosphate [PF6]- anion supported ionic liquid membranes. J Membr Sci 238(1–2):57–63

    Google Scholar 

  51. Baltus RE, Counce BM, Culbertson BH, Lou H, DePauli DW, Dai S, Duckworth C (2005) Examination of the potential of ionic liquids for gas separation. Sep Sci Technol 40:525–541

    Google Scholar 

  52. Morgan D, Ferguson L, Scovazzo P (2005) Diffusivities of gases in room-temperature ionic liquids: data and correlations obtained using a lag-time technique. Ind Eng Chem Res 44(13):4815–4823

    Google Scholar 

  53. Jiang Y-Y, Zhou Z, Jiao Z, Li L, Wu Y-T, Zhang Z-B (2007) SO2 gas separation using supported ionic liquid membranes. J Phys Chem B 111(19):5058–5061

    Google Scholar 

  54. Cserjési P, Nemestóthy N, Vass A, Csanádi Z, Bélafi-Bakó K (2009) Study on gas separation by supported liquid membranes applying novel ionic liquids. Desalination 245(1–3):743–747

    Google Scholar 

  55. Neves LA, Nemestóthy N, Alves VD, Cserjési P, Bélafi-Bakó K, Coelhoso IM (2009) Separation of biohydrogen by supported ionic liquid membranes. Desalination 240(1–3):311–315

    Google Scholar 

  56. Scovazzo P, Havard D, McShea M, Mixon S, Morgan D (2009) Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes. J Membr Sci 327(1–2):41–48

    Google Scholar 

  57. Luis P, Neves LA, Afonso CAM, Coelhoso IM, Crespo JG, Garea A, Irabien A (2009) Facilitated transport of CO2 and SO2 through supported ionic liquid membranes (SILMs). Desalination 245(1–3):485–493

    Google Scholar 

  58. Zhao W, He G, Zhang L, Ju J, Dou H, Nie F, Li C, Liu H (2010) Effect of water in ionic liquid on the separation performance of supported ionic liquid membrane for CO2/N2. J Membr Sci 350(1–2):279–285

    Google Scholar 

  59. Neves LA, Crespo JG, Coelhoso IM (2010) Gas permeation studies in supported ionic liquid membranes. J Membr Sci 357(1–2):160–170

    Google Scholar 

  60. Mahurin SM, Lee JS, Baker GA, Luo H, Dai S (2010) Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation. J Membr Sci 353(1–2):177–183

    Google Scholar 

  61. Jindaratsamee P, Ito A, Komuro S, Shimoyama Y (2012) Separation of CO2 from the CO2/N2 mixed gas through ionic liquid membranes at the high feed concentration. J Membr Sci 423–424:27–32

    Google Scholar 

  62. Mahurin SM, Yeary JS, Baker SN, Jiang D-E, Dai S, Baker GA (2012) Ring-opened heterocycles: promising ionic liquids for gas separation and capture. J Membr Sci 401–402:61–67

    Google Scholar 

  63. Close JJ, Farmer K, Moganty SS, Baltus RE (2012) CO2/N2 separations using nanoporous alumina-supported ionic liquid membranes: effect of the support on separation performance. J Membr Sci 390–391:201–210

    Google Scholar 

  64. Mahurin SM, Hillesheim PC, Yeary JS, Jiang D-E, Dai S (2012) High CO2 solubility, permeability and selectivity in ionic liquids with the tetracyanoborate anion. RSC Adv 2(31):11813–11819

    Google Scholar 

  65. Tomé LC, Patinha DJS, Freire CSR, Rebelo LPN, Marrucho IM (2013) CO2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. RSC Adv 3(30):12220–12229

    Google Scholar 

  66. Ferguson L, Scovazzo P (2007) Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids: data and correlations. Ind Eng Chem Res 46(4):1369–1374

    Google Scholar 

  67. Cserjési P, Nemestóthy N, Bélafi-Bakó K (2010) Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids. J Membr Sci 349(1–2):6–11

    Google Scholar 

  68. Hou Y, Baltus RE (2007) Experimental measurement of the solubility and diffusivity of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method. Ind Eng Chem Res 46(24):8166–8175

    Google Scholar 

  69. Pereiro AB, Tomé LC, Martinho S, Rebelo LPN, Marrucho IM (2013) Gas permeation properties of fluorinated ionic liquids. Ind Eng Chem Res 52(14):4994–5001

    Google Scholar 

  70. Condemarin R, Scovazzo P (2009) Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data. Chem Eng J 147(1):51–57

    Google Scholar 

  71. Tomé LC, Patinha DJS, Ferreira R, Garcia H, Silva Pereira C, Freire CSR, Rebelo LPN, Marrucho IM (2013) Cholinium-based supported ionic liquid membranes: a sustainable route for CO2 separation. ChemSusChem. doi:10.1002/cssc.201300613

    MATH  Google Scholar 

  72. Hillesheim PC, Mahurin SM, Fulvio PF, Yeary JS, Oyola Y, Jiang D-E, Dai S (2012) Synthesis and characterization of thiazolium-based room temperature ionic liquids for gas separations. Ind Eng Chem Res 51(35):11530–11537

    Google Scholar 

  73. Hillesheim PC, Singh JA, Mahurin SM, Fulvio PF, Oyola Y, Zhu X, Jiang D-E, Dai S (2013) Effect of alkyl and aryl substitutions on 1,2,4-triazolium-based ionic liquids for carbon dioxide separation and capture. RSC Adv 3(12):3981–3989

    Google Scholar 

  74. Bara JE, Gabriel CJ, Lessmann S, Carlisle TK, Finotello A, Gin DL, Noble RD (2007) Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids. Ind Eng Chem Res 46(16):5380–5386

    Google Scholar 

  75. Bara JE, Gabriel CJ, Carlisle TK, Camper DE, Finotello A, Gin DL, Noble RD (2009) Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chem Eng J 147(1):43–50

    Google Scholar 

  76. Robeson LM (2008) The upper bound revisited. J Membr Sci 320(1–2):390–400

    Google Scholar 

  77. Malik MA, Hashim MA, Nabi F (2011) Ionic liquids in supported liquid membrane technology. Chem Eng J 171(1):242–254

    Google Scholar 

  78. Uk Hong S, Park D, Ko Y, Baek I (2009) Polymer-ionic liquid gels for enhanced gas transport. Chem Commun (46):7227–7229

    Google Scholar 

  79. Jansen JC, Friess K, Clarizia G, Schauer J, Izák P (2010) High ionic liquid content polymeric gel membranes: preparation and performance. Macromolecules 44(1):39–45

    ADS  Google Scholar 

  80. Uchytil P, Schauer J, Petrychkovych R, Setnickova K, Suen SY (2011) Ionic liquid membranes for carbon dioxide–methane separation. J Membr Sci 383(1–2):262–271

    Google Scholar 

  81. Erdni-Goryaev EM, Alent’ev AY, Belov NA, Ponkratov DO, Shaplov AS, Lozinskaya EI, Vygodskii YS (2012) Gas separation characteristics of new membrane materials based on poly(ethylene glycol)-crosslinked polymers and ionic liquids. Pet Chem 52(7):494–498

    Google Scholar 

  82. Chen HZ, Li P, Chung T-S (2012) PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas. Int J Hydrogen Energy 37(16):11796–11804

    Google Scholar 

  83. Bernardo P, Jansen JC, Bazzarelli F, Tasselli F, Fuoco A, Friess K, Izák P, Jarmarová V, Kačírková M, Clarizia G (2012) Gas transport properties of Pebax®/room temperature ionic liquid gel membranes. Sep Purif Technol 97:73–82

    Google Scholar 

  84. Friess K, Jansen JC, Bazzarelli F, Izák P, Jarmarová V, Kačírková M, Schauer J, Clarizia G, Bernardo P (2012) High ionic liquid content polymeric gel membranes: correlation of membrane structure with gas and vapour transport properties. J Membr Sci 415–416:801–809

    Google Scholar 

  85. Voss BA, Bara JE, Gin DL, Noble RD (2009) Physically gelled ionic liquids: solid membrane materials with liquid like CO2 gas transport. Chem Mater 21(14):3027–3029

    Google Scholar 

  86. Yoon I-N, Yoo S, Park S-J, Won J (2011) CO2 separation membranes using ion gels by self-assembly of a triblock copolymer in ionic liquids. Chem Eng J 172(1):237–242

    Google Scholar 

  87. Gu Y, Lodge TP (2011) Synthesis and gas separation performance of triblock copolymer ion gels with a polymerized ionic liquid mid-block. Macromolecules 44(7):1732–1736

    ADS  Google Scholar 

  88. Gu Y, Cussler EL, Lodge TP (2012) ABA-triblock copolymer ion gels for CO2 separation applications. J Membr Sci 423–424:20–26

    Google Scholar 

  89. Couto RM, Carvalho T, Neves LA, Ruivo RM, Vidinha P, Paiva A, Coelhoso IM, Barreiros S, Simões PC (2013) Development of Ion-Jelly® membranes. Sep Purif Technol 106:22–31

    Google Scholar 

  90. Noble RD, Gin DL (2011) Perspective on ionic liquids and ionic liquid membranes. J Membr Sci 369(1–2):1–4

    Google Scholar 

  91. Green O, Grubjesic S, Lee S, Firestone MA (2009) The design of polymeric ionic liquids for the preparation of functional materials. Poly Rev 49(4):339–360

    Google Scholar 

  92. Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34(5):431–448

    Google Scholar 

  93. Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36(12):1629–1648

    Google Scholar 

  94. Yuan J, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 52(7):1469–1482

    Google Scholar 

  95. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38(7):1009–1036

    Google Scholar 

  96. Ohno H, Ito K (1998) Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem Lett 27(8):751–752

    Google Scholar 

  97. Yoshizawa M, Ogihara W, Ohno H (2002) Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers. Polym Adv Technol 13(8):589–594

    Google Scholar 

  98. Washiro S, Yoshizawa M, Nakajima H, Ohno H (2004) Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer 45(5):1577–1582

    Google Scholar 

  99. Ohno H (2007) Design of Ion conductive polymers based on ionic liquids. Macromol Symp 249–250(1):551–556

    Google Scholar 

  100. Tang J, Sun W, Tang H, Radosz M, Shen Y (2005) Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38(6):2037–2039

    ADS  Google Scholar 

  101. Tang J, Tang H, Sun W, Plancher H, Radosz M, Shen Y (2005) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun (26):3325–3327

    Google Scholar 

  102. Tang J, Tang H, Sun W, Radosz M, Shen Y (2005) Low-pressure CO2 sorption in ammonium-based poly(ionic liquid)s. Polymer 46(26):12460–12467

    Google Scholar 

  103. Tang J, Shen Y, Radosz M, Sun W (2009) Isothermal carbon dioxide sorption in poly(ionic liquid)s. Ind Eng Chem Res 48(20):9113–9118

    Google Scholar 

  104. Mineo PG, Livoti L, Giannetto M, Gulino A, Lo Schiavo S, Cardiano P (2009) Very fast CO2 response and hydrophobic properties of novel poly(ionic liquid)s. J Mater Chem 19(46):8861–8870

    Google Scholar 

  105. Samadi A, Kemmerlin RK, Husson SM (2010) Polymerized ionic liquid sorbents for CO2 separation. Energ Fuel 24(10):5797–5804

    Google Scholar 

  106. Xiong Y-B, Wang H, Wang Y-J, Wang R-M (2012) Novel imidazolium-based poly(ionic liquid)s: preparation, characterization, and absorption of CO2. Polym Adv Technol 23(5):835–840

    Google Scholar 

  107. Bhavsar RS, Kumbharkar SC, Kharul UK (2012) Polymeric ionic liquids (PILs): effect of anion variation on their CO2 sorption. J Membr Sci 389:305–315

    Google Scholar 

  108. Wilke A, Yuan J, Antonietti M, Weber J (2012) Enhanced carbon dioxide adsorption by a mesoporous poly(ionic liquid). ACS Macro Lett 1(8):1028–1031

    Google Scholar 

  109. Fang W, Luo Z, Jiang J (2013) CO2 capture in poly(ionic liquid) membranes: atomistic insight into the role of anions. Phys Chem Chem Phys 15(2):651–658

    Google Scholar 

  110. Privalova EI, Karjalainen E, Nurmi M, Mäki-Arvela P, Eränen K, Tenhu H, Murzin DY, Mikkola J-P (2013) Imidazolium-based poly(ionic liquid)s as new alternatives for CO2 capture. ChemSusChem 6(8):1500–1509

    Google Scholar 

  111. Camper D, Bara J, Koval C, Noble R (2006) Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids. Ind Eng Chem Res 45(18):6279–6283

    Google Scholar 

  112. Bara JE, Lessmann S, Gabriel CJ, Hatakeyama ES, Noble RD, Gin DL (2007) Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes. Ind Eng Chem Res 46(16):5397–5404

    Google Scholar 

  113. Bara JE, Gabriel CJ, Hatakeyama ES, Carlisle TK, Lessmann S, Noble RD, Gin DL (2008) Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents. J Membr Sci 321(1):3–7

    Google Scholar 

  114. Bara JE, Hatakeyama ES, Gabriel CJ, Zeng X, Lessmann S, Gin DL, Noble RD (2008) Synthesis and light gas separations in cross-linked gemini room temperature ionic liquid polymer membranes. J Membr Sci 316(1–2):186–191

    Google Scholar 

  115. Carlisle TK, Wiesenauer EF, Nicodemus GD, Gin DL, Noble RD (2012) Ideal CO2/light gas separation performance of poly(vinylimidazolium) membranes and poly(vinylimidazolium)-ionic liquid composite films. Ind Eng Chem Res 52(3):1023–1032

    Google Scholar 

  116. Li P, Paul DR, Chung T-S (2012) High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. Green Chem 14(4):1052–1063

    Google Scholar 

  117. Carlisle TK, Bara JE, Lafrate AL, Gin DL, Noble RD (2010) Main-chain imidazolium polymer membranes for CO2 separations: an initial study of a new ionic liquid-inspired platform. J Membr Sci 359(1–2):37–43

    Google Scholar 

  118. Tomé LC, Mecerreyes D, Freire CSR, Rebelo LPN, Marrucho IM (2013) Pyrrolidinium-based polymeric ionic liquid materials: new perspectives for CO2 separation membranes. J Membr Sci 428:260–266

    Google Scholar 

  119. Bara JE, Hatakeyama ES, Gin DL, Noble RD (2008) Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polym Adv Technol 19(10):1415–1420

    Google Scholar 

  120. Bara JE, Gin DL, Noble RD (2008) Effect of anion on gas separation performance of polymer − room-temperature ionic liquid composite membranes. Ind Eng Chem Res 47(24):9919–9924

    Google Scholar 

  121. Bara JE, Noble RD, Gin DL (2009) Effect of “Free” cation substituent on gas separation performance of polymer − room-temperature ionic liquid composite membranes. Ind Eng Chem Res 48(9):4607–4610

    Google Scholar 

  122. Li P, Pramoda KP, Chung T-S (2011) CO2 separation from flue gas using polyvinyl-(room temperature ionic liquid)–room temperature ionic liquid composite membranes. Ind Eng Chem Res 50(15):9344–9353

    Google Scholar 

  123. Carlisle TK, Nicodemus GD, Gin DL, Noble RD (2012) CO2/light gas separation performance of cross-linked poly(vinylimidazolium) gel membranes as a function of ionic liquid loading and cross-linker content. J Membr Sci 397–398:24–37

    Google Scholar 

  124. Hu X, Tang J, Blasig A, Shen Y, Radosz M (2006) CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen. J Membr Sci 281(1–2):130–138

    Google Scholar 

  125. Li P, Coleman MR (2013) Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications. Eur Polym J 49(2):482–491

    MathSciNet  Google Scholar 

  126. Chi WS, Hong SU, Jung B, Kang SW, Kang YS, Kim JH (2013) Synthesis, structure and gas permeation of polymerized ionic liquid graft copolymer membranes. J Membr Sci 443:54–61

    Google Scholar 

  127. Kammakakam I, Kim HW, Nam S, Park HB, Kim T-H (2013) Alkyl imidazolium-functionalized cardo-based poly(ether ketone)s as novel polymer membranes for O2/N2 and CO2/N2 separations. Polymer 54(14):3534–3541

    Google Scholar 

  128. Nguyen PT, Wiesenauer EF, Gin DL, Noble RD (2013) Effect of composition and nanostructure on CO2/N2 transport properties of supported alkyl-imidazolium block copolymer membranes. J Membr Sci 430:312–320

    Google Scholar 

  129. Tomé LC, Aboudzadeh MA, Rebelo LPN, Freire CSR, Mecerreyes D, Marrucho IM (2013) Polymeric ionic liquids with mixtures of counter-anions: a new straightforward strategy for designing pyrrolidinium-based CO2 separation membranes. J Mater Chem A 1(35):10403–10411

    Google Scholar 

  130. Hudiono YC, Carlisle TK, Bara JE, Zhang Y, Gin DL, Noble RD (2010) A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials. J Membr Sci 350(1–2):117–123

    Google Scholar 

  131. Hudiono YC, Carlisle TK, LaFrate AL, Gin DL, Noble RD (2011) Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation. J Membr Sci 370(1–2):141–148

    Google Scholar 

  132. Hao L, Li P, Yang T, Chung T-S (2013) Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. J Membr Sci 436:221–231

    Google Scholar 

  133. Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, Chichester

    Google Scholar 

  134. Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47(7):2109–2121

    Google Scholar 

  135. Merkel TC, Lin H, Wei X, Baker R (2010) Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci 359(1–2):126–139

    Google Scholar 

  136. Brunetti A, Scura F, Barbieri G, Drioli E (2010) Membrane technologies for CO2 separation. J Membr Sci 359(1–2):115–125

    Google Scholar 

  137. Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, Freeman BD (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54(18):4729–4761

    Google Scholar 

  138. Williams PJ, Koros WJ (2008) Gas separation by carbon membranes. In: Advanced membrane technology and applications. Wiley, Hoboken, pp 599–631

    Google Scholar 

  139. Dong G, Li H, Chen V (2013) Challenges and opportunities for mixed-matrix membranes for gas separation. J Mater Chem A 1(15):4610–4630

    Google Scholar 

  140. Wijmans JG, Baker RW (1995) The solution-diffusion model: a review. J Membr Sci 107(1–2):1–21

    Google Scholar 

  141. Matteucci S, Yampolskii Y, Freeman BD, Pinnau I (2006) Transport of gases and vapors in glassy and rubbery polymers. In: Materials science of membranes for gas and vapor separation. Wiley, Chichester, pp 1–47

    Google Scholar 

  142. Ghosal K, Freeman BD (1994) Gas separation using polymer membranes: an overview. Polym Adv Technol 5(11):673–697

    Google Scholar 

  143. Freeman BD (1999) Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32(2):375–380

    ADS  Google Scholar 

  144. Kim TH, Koros WJ, Husk GR, O’Brien KC (1988) Relationship between gas separation properties and chemical structure in a series of aromatic polyimides. J Membr Sci 37(1):45–62

    Google Scholar 

  145. Stern SA, Mi Y, Yamamoto H, Clair AKS (1989) Structure/permeability relationships of polyimide membranes. Applications to the separation of gas mixtures. J Polym Sci Part B Polym Phys 27(9):1887–1909

    ADS  Google Scholar 

  146. Alexander Stern S (1994) Polymers for gas separations: the next decade. J Membr Sci 94(1):1–65

    Google Scholar 

  147. Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62(2):165–185

    Google Scholar 

  148. Pont A-L, Marcilla R, De Meatza I, Grande H, Mecerreyes D (2009) Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes. J Power Sources 188(2):558–563

    Google Scholar 

  149. Noble RD (2011) Perspectives on mixed matrix membranes. J Membr Sci 378(1–2):393–397

    Google Scholar 

Download references

Acknowledgments

Liliana C. Tomé would like to thank the FCT (Fundação para a Ciência e Tecnologia) for her PhD research grant (SFRH/BD/72830/2010). Isabel M. Marrucho also acknowledges FCT/MCTES (Portugal) for a contract under Investigador FCT 2012. This work was supported through the project PTDC/QEQ-FTT/1686/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel M. Marrucho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tomé, L.C., Marrucho, I.M. (2015). Poly(ionic liquid)s: Designing CO2 Separation Membranes. In: Mecerreyes, D. (eds) Applications of Ionic Liquids in Polymer Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44903-5_10

Download citation

Publish with us

Policies and ethics